ELECTROMAGNETIC EFFECTS OF ACOUSTIC AND ATMOSPHERIC GRAVITY WAVES IN THE NEAR-EARTH ATMOSPHERE

DOI: https://doi.org/10.15407/rpra25.04.290

Y. Luo, L. F. Chernogor

Abstract


Purpose: Acoustic and atmospheric gravity waves (AAGW) are generated by many natural and anthropogenic sources. The AAGW propagation at ionospheric heights is accompanied by the generation of disturbances in the magnetic and electric fields. The plasma presence plays a crucial role. The mechanisms for generating electrical and magnetic disturbances in the near-Earth atmosphere by the AAGW have been studied much worse. Therefore, the validation of the capability to generate electromagnetic disturbances in the near-Earth atmosphere by the AAGW is an urgent problem. The purpose of this paper is to describe the mechanism for generating disturbances in the electric and magnetic fields in the near-Earth atmosphere under the action of AAGW and to estimate the amplitudes of these disturbances for various AAGW sources.

Design/methodology/approach: The impact of a series of highenergy
sources often results in the generation of synchronous disturbances in the acoustic and geoelectric (atmospheric) fields, when an approximate proportionality between the pressure amplitude and the amplitude of the disturbances in the atmospheric electric field is observed to occur. Based on the observational data and making use of the Maxwell equations, the theoretical estimates of the disturbances in the electric and magnetic
fields have been obtained.

Findings: Simplified expressions have been obtained for estimating the amplitudes of the electric and magnetic fields under the action of the AAGW generated by natural and manmade sources. The amplitudes of the electric and magnetic fields generated by the AAGW of natural and manmade origin, which travel in the near-Earth atmosphere, have been calculated. The amplitudes of the AAGW generated electric and magnetic fields are shown to be large enough to be detected with the existing electrometers and fluxmeter magnetometers. The magnitudes of the amplitudes of the electric and magnetic fields generated in the near-Earth atmosphere under the action of AAGW are large enough to trigger coupling between the subsystems in the Earth–atmosphere–ionosphere–magnetosphere system.

Conclusions: The estimates and not numerous observations are in good agreement.

Key words: acoustic and atmospheric gravity waves, near-Earth atmosphere, volume charge, atmospheric pressure disturbances, electric field, magnetic field

Manuscript submitted 12.09.2020

Radio phys. radio astron. 2020, 25(4): 290-307

REFERENCES

1. GOSSARD, E. E. and HOOKE, W. H., 1975. Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves: Their Generation and Propagation. 2. Developments in Atmospheric Science. Amsterdam: Elsevier Scientific.

2. PARROT, C. J., 2002. An Introduction to Atmospheric Gravity Waves. San Diego, CA, USA; London, UK: Academic Press.

3. LE PICHON, A., BLANC, E. and HAUCHECORNE, A., eds., 2019. Infrasound monitoring for atmospheric studies. Switzerland: Springer Int. Publ. DOI: https://doi.org/10.1007/978-3-319-75140-5

4. REVELLE, D. O., 1976. On meteor-generated infrasound. J. Geophys. Res. vol. 81, is. 7, pp. 1217–1240. DOI: https://doi.org/10.1029/JA081i007p01217

5. ARROWSMITH, S. J., REVELLE, D., EDWARDS, W. and BROWN, P., 2007. Global Detection of Infrasonic Signals from Three Large Bolides. In: J. M. TRIGO-RODRÍGUEZ, F. J. M. RIETMEIJER, J. LLORCA, and D. JANCHES, eds. Advances in Meteoroid and Meteor Science. New York, NY: Springer, pp. 357–363. DOI: https://doi.org/10.1007/978-0-387-78419-9_50

6. EDWARDS, W. N., 2010. Meteor Generated Infrasound: Theory and Observation. In: A. LE PICHON, E. BLANC, and A. HAUCHECORNE, eds Infrasound Monitoring for Atmospheric Studies. Dordrecht, Heidelberg, London, New York: Springer Int. Publ., P. 361–414. DOI: https://doi.org/10.1007/978-1-4020-9508-5_12

7. ENS, T. A., BROWN, P. G., EDWARDS, W. N. and SILBER, E. A., 2012. Infrasound production by bolides: A global statistical study. J. Atmos. Sol.-Terr. Phys. vol. 80, pp. 208–229. DOI: https://doi.org/10.1016/j.jastp.2012.01.018

8. CHERNOGOR, L. F. and BARABASH, V. V., 2014. Ionosphere disturbances accompanying the flight of the Chelyabinsk body. Kinemat. Phys. Celest. Bodies. vol. 30, is. 3, pp. 126–136. DOI: https://doi.org/10.3103/S0884591314030039

9. CHERNOGOR, L. F., 2017. Chelyabinsk Meteoroid Acoustic Effects. Radio Phys. Radio Astron. vol. 22, no. 1, pp. 53–66. (in Russian). DOI: https://doi.org/10.15407/rpra22.01.053

10. LAZORENKO, O. V. and CHERNOGOR, L. F., 2017. System Spectral Analysis of Infrasonic Signal Generated by Chelyabinsk Meteoroid. Radioelectron. Commun. Syst. vol. 60, is. 8, pp. 331–338. DOI: https://doi.org/10.3103/S0735272717080015

11. CHERNOGOR, L. F. and LIASHCHUK, O. I., 2017. Parameters of Infrasonic Waves Generated by the Chelyabinsk Meteoroid on February 15, 2013. Kinemat. Phys. Celest. Bodies. vol. 33, is. 2, pp. 79–87. DOI: https://doi.org/10.3103/S0884591317020027

12. CHERNOGOR, L. F. and SHEVELEV, N. B., 2018. Characteristics of the Infrasound SignalGenerated by Chelyabinsk Celestial Body: Global Statistics. Radio Phys. Radio Astron. vol. 23, no. 1, pp. 24–35. (in Russian). DOI: https://doi.org/10.15407/rpra23.01.024

13. CHERNOGOR, L. F., 2020. Statistical Analysis of Infrasonic Parameters Generated by the Chelyabinsk Meteoroid. Kinemat. Phys. Celest. Bodies. vol. 36, is. 4, pp. 171–185. DOI: https://doi.org/10.3103/S0884591320040029

14. CAMPBELL, W. H. and YOUNG, J. M., 1963. Auroral-zone observations of infrasonic pressure waves related to ionospheric disturbances and geomagnetic activity. J. Geophy. Res. vol. 68, is. 21, pp. 5909–5916. DOI: https://doi.org/10.1029/JZ068i021p05909

15. MAEDA, K. and WATANABE, T., 1964. Pulsating Aurorae and Infrasonic Waves in the Polar Atmosphere. J. Atmos. Sci. vol. 21, is. 1, pp. 15–29. DOI: https://doi.org/10.1175/1520-0469(1964)021<0015:PAAIWI>2.0.CO;2

16. CHIMONAS, G., 1970. Infrasonic waves generated by auroral currents. Planet. Space Sci. vol. 18, is. 4, pp. 591–598. DOI: https://doi.org/10.1016/0032-0633(70)90134-0

17. ERUSHCHENKOV, A. I. and DOVBNYA, B. V., 1977. On the relationship between high frequency infrasound and geomagnetic pulsations in the auroral zone. Issledovaniya po geomagnetizmu, aeronomii i fizike Solntsa. vol. 43, pp. 142–146. (in Russian).

18. SUZUKI, Y., 1979. Auroral infrasonic waves and the auroral electrojet. J. Atmos. Terr. Phys. vol. 41, is. 1, pp. 11–23. DOI: https://doi.org/10.1016/0021-9169(79)90042-4

19. SUZUKI, Y., 1979. Temporal and spatial changes of polar substorms and infrasonic wave emissions. Planet. Space Sci. vol. 27, is. 9, pp. 1195–1208. DOI: https://doi.org/10.1016/0032-0633(79)90139-9

20. WILSON, C. R., SZUBERLA, C. A. L. and OLSON, J. V., 2010. High-latitude Observations of Infrasound from Alaska and Antarctica: Mountain Associated Waves and Geomagnetic/Auroral Infrasonic Signals. In: A. LE PICHON, E. BLANC, and A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht, Heidelberg, London, New York: Springer Int. Publ. P. 415–454. DOI: https://doi.org/10.1007/978-1-4020-9508-5_13

21. CHIMONAS, G. and HINES, C. O., 1970. Atmospheric gravity waves induced by a solar eclipse. J. Geophys. Res. vol. 75, is. 4, p. 875. DOI: https://doi.org/10.1029/JA075i004p00875

22. DAVIS, M. J. and DA ROSA, A. V., 1970. Possible Detection of Atmospheric Gravity Waves generated by the Solar Eclipse. Nature. vol. 226, no. 5251, p. 1123. DOI: https://doi.org/10.1038/2261123a0

23. ICHINOSE, T. and OGAWA, T., 1976. Internal gravity waves deduced from the HF Doppler data during the April 19, 1958, solar eclipse. J. Geophys. Res. vol. 81, is. 13, pp. 2401–2404 DOI: https://doi.org/10.1029/JA081i013p02401

24. BROCHE, P., CROCHET, M. and DE MAISTRE, J. C., 1976. Gravity waves generated by the 30 June 1973 solar eclipse in Africa. J. Atmos. Terr. Phys. vol. 38, is. 12, pp. 1361–1364. DOI: https://doi.org/10.1016/0021-9169(76)90147-1

25. BERTIN, F., HUGHES, K. A. and KERSLEY, L., 1977. Atmospheric waves induced by the solar eclipse of 30 June 1973. J. Atmos. Terr. Phys. vol. 39, is. 4, pp. 457–461. DOI: https://doi.org/10.1016/0021-9169(77)90153-2

26. JONES, T. B., WRIGHT, D. M., MILNER, J., YEOMAN, T. K., REID, T., CHAPMAN, P. J. and SENIOR, A., 2004. The detection of atmospheric waves produced by the total solar eclipse of 11 August 1999. J. Atmos. Sol.-Terr. Phys. vol. 66, is. 5, pp. 363–374. DOI: https://doi.org/10.1016/j.jastp.2004.01.029

27. BUTCHER, E. C., DOWNING, A. M. and Cole, K. D., 1979. Wavelike variations in the F-region in the path of totality of the eclipseb of 23 October 1976. J. Atmos. Terr. Phys. vol. 41, is. 5, pp. 439–444. DOI: https://doi.org/10.1016/0021-9169(79)90068-0

28. CHERNOGOR, L. F., 2010. Variations in the Amplitude and Phase of VLF Radiowaves in the Ionosphere during the August 1, 2008, Solar Eclipse. Geomagn. Aeron. vol. 50, is. 1, pp. 96–106. DOI: https://doi.org/10.1134/S0016793210010111

29. CHERNOGOR, L. F., 2010. Wave Response of the Ionosphere to the Partial Solar Eclipse of August 1, 2008. Geomagn. Aeron. vol. 50, is. 3, pp. 346–361. DOI: https://doi.org/10.1134/S0016793210030096

30. CHERNOGOR, L. F., 2012. Effects of solar eclipses in the ionosphere: Results of Doppler sounding: 1. Experimental data. Geomagn. Aeron. vol. 52, is. 6, pp. 768–778. DOI: https://doi.org/10.1134/S0016793212050039

31. CHERNOGOR, L. F., 2012. Effects of Solar Eclipses in the Ionosphere: Doppler Sounding Results: 2. Spectral Analysis. Geomagn. Aeron. vol. 52, is. 6, pp. 779–792. DOI: 
https://doi.org/10.1134/S0016793212050040

32. BURMAKA, V. P. and CHERNOGOR, L. F., 2013. Solar Eclipse of August 1, 2008, above Kharkov: 2. Observation Results of Wave Disturbances in the Ionosphere. Geomagn. Aeron. vol. 53, is. 4, pp. 479–491. DOI: https://doi.org/10.1134/S001679321304004X

33. CHERNOGOR, L. F., 2013. Physical Processes in the Middle Ionosphere Accompanying the Solar Eclipse of January 4, 2011, in Kharkov. Geomagn. Aeron. vol. 53, is. 1, pp. 19–31. DOI: https://doi.org/10.1134/S0016793213010052

34. CHERNOGOR, L. F., 2013. Physical effects of solar eclipses in atmosphere and geospace: monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).

35. PUSHIN, V. F. and CHERNOGOR, L. F., 2013. Infrasonic effect of solar eclipses. Radio Phys. Radio Astron. vol. 18, no. 2, pp. 127–137. (in Russian).

36. CHERNOGOR, L. F. and GARMASH, K. P., 2017. Magneto-Ionospheric Effects of the Solar Eclipse of March 20, 2015, over Kharkov. Geomagn. Aeron. vol. 57, is. 1, pp. 72–83. DOI: https://doi.org/10.1134/S0016793216060062

37. STANKOV, S. M., BERGEOT, N., BERGHMANS, D., BOLSÉE, D., BRUYNINX, C., CHEVALIER, J.-M., CLETTE, F., DE BACKER, H., DE KEYSER, J., D’HUYS, E., DOMINIQUE, M., LEMAIRE, J. F., MAGDALENIĆ, J., MARQUÉ, C., PEREIRA, N., PIERRARD, V., SAPUNDJIEV, D., SEATON, D. B., STEGEN, K., VAN DER LINDEN, R., VERHULST, T. G. W. and WEST, M. J., 2017. Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. J. Space Weather Space Clim. vol. 7, id. A19 DOI: https://doi.org/10.1051/swsc/2017017

38. NYKIEL, G., ZANIMONSKIY, Y. M., YAMPOLSKI, Y. M. and FIGURSKI, M., 2017. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations. Sensors. vol. 17, is. 10, id. 2298. DOI: https://doi.org/10.3390/s17102298

39. MOŠNA, Z., BOŠKA, J., KNÍŽOVÁ, P. K., ŠINDELÁŘOVÁ, T., KOUBA, D., CHUM, J., REJFEK, L., POTUŽNÍKOVÁ, K., ARIKAN, F. and TOKER, C., 2018. Observation of the solar eclipse of 20 March 2015 at the Pruhonice station. J. Atmos. Sol.-Terr. Phys. vol. 171, pp. 277–284. DOI: https://doi.org/10.1016/j.jastp.2017.07.011

40. PANASENKO, S. V., OTSUKA, Y., VAN DE KAMP, M., CHERNOGOR, L. F., SHINBORI, A., TSUGAWA, T. and NISHIOKA, M., 2019. Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Sol.-Terr. Phys. vol. 191, id. 105051. DOI: https://doi.org/10.1016/j.jastp.2019.05.015

41. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO, V. T. and ZHENG, Y., 2020. Radio Monitoring of Dynamic Processes in the Ionosphere Over China During the Partial Solar Eclipse of 11 August 2018. Radio Sci. vol. 55, is. 2, id. e2019RS006866. DOI: https://doi.org/10.1029/2019RS006866

42. SOMSIKOV, V. M. 1983. Solar terminator and dynamic phenomena in the astrosphere. Alma-Ata, Kazakhstan: Nauka Publ. (in Russian). 

43. SOMSIKOV, V. M., 1991 Waves in the Atmosphere Caused by the Solar Terminator: A Review, Geomagnetizm i Aeronomiia. vol. 31, no. 1, pp. 1–12. (in Russian)

44. BURMAKA, V. P., TARAN, V. I. and CHERNOGOR, L. F., 2004. Ionospheric Wave Disturbances Accompanied by Rocket Launches against a Background of Natural Transient Processes. Geomag. Aeron. vol. 44, no. 4, pp. 476–491.

45. CHERNOGOR, L. F. and SHAMOTA, M. A., 2009. Geomagnetic pulsations associated with solar terminators near Kharkiv city. 1. Spectral analysis. Space Sci. Tech. vol. 15, no. 5, pp. 43–51. (in Russian). DOI: https://doi.org/10.15407/knit2009.05.043

46. CHERNOGOR, L. F. and SHAMOTA, M. A., 2009. Geomagnetic pulsations associated with solar terminators near Kharkiv city. 2. Statistical analysis. Space Sci. Tech. vol. 15, no. 6, pp. 14–19. (in Russian). DOI: https://doi.org/10.15407/knit2009.06.014

47. CHERNOGOR, L. F., 2012. Geomagnetic pulsations accompanied the solar terminator moving through magnetoconjugate region. Radio Phys. Radio Astron. vol. 17, no. 1, pp. 57–66. (in Russian).

48. SOLOVIEV, S. P., RYBNOV, YU. S. and KHARLAMOV, V. A., 2015. The synchronic disturbances of the acoustic and electric fields caused by artificial and natural sources. In: V. V. ADUSHKIN and G. G. KOCHERYAN, eds. Trigger effects in geosystems. Proceedings of the 3rd All-Russia Meeting. Moskow, Russia: GEOS Publ., pp. 317–326. (in Russian).

49. CHERNOGOR, L. F., 2006. The tropical cyclone as an element of the Earth – atmosphere – ionosphere – magnetosphere system. Space Sci. Tech. vol. 12, no. 2-3, pp. 16–36. (in Russian). DOI: https://doi.org/10.15407/knit2006.02.016

50. HETZER, C. H., WAXLER, R., GILBERT, K. E., TALMADGE, C. L. and BASS, H. E., 2008. Infrasound from hurricanes: Dependence on the ambient ocean surface wave field. Geophys. Res. Lett. vol. 35, is. 14, id: L14609. DOI: https://doi.org/10.1029/2008GL034614

51. HETZER, C. H., GILBERT, K. E., WAXLER, R. and TALMADGE, C. L., 2010. Generation of Microbaroms by Deep-Ocean Hurricanes. In: A. LE PICHON, E. BLANC, and A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht: Springer. DOI: https://doi.org/10.1007/978-1-4020-9508-5_8

52. NISHIOKA, M., TSUGAWA, T., KUBOTA, M. and ISHII, M., 2013. Concentric waves and short-period oscillations observed in the ionosphere after the 2013 Moore EF5 tornado. Geophys. Res. Lett. vol. 40, is. 21, pp. 5581–5586. DOI: https://doi.org/10.1002/2013GL057963

53. CHOU, M.-Y., LIN, C. C. H., YUE, J., CHANG, L. C., TSAI, H.-F. and CHEN, C.-H., 2017. Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016). Geophys. Res. Lett. vol. 44, is. 15, pp. 7569–7577. DOI: https://doi.org/10.1002/2017GL073961

54. SPIVAK, A. A., RYBNOV, YU. S. and KHARLAMOV, V. A., 2018. Variations in Geophysical Fields during Hurricanes and Squalls. Dokl. Earth Sci. vol. 480, pp. 788–791. DOI: https://doi.org/10.1134/S1028334X18060193

55. RICHARDS, A. F., 1963. Volcanic sounds: Investigation and analysis. J. Geophys. Res. vol. 68, is. 3, pp. 919–928. DOI: https://doi.org/10.1029/JZ068i003p00919

56. GOERKE, V. H., YOUNG, J. M. and COOK, R. K., 1965. Infrasonic observations of the May 16, 1963, volcanic explosion on the island of Bali. J. Geophys. Res. vol. 70, is. 24, pp. 6017–6022. DOI: https://doi.org/10.1029/JZ070i024p06017

57. BOLT, B. A. and TANIMOTO, T., 1981. Atmospheric oscillations after the May 18, 1980 eruption of Mount St. Helens. Eos. vol. 62, is. 23, pp. 529–530. DOI: https://doi.org/10.1029/EO062i023p00529

58. KIEFFER, S. W., 1981. Blast dynamics at Mount St Helens on 18 May 1980. Nature. vol. 291, no. 5816, pp. 568–570. DOI: https://doi.org/10.1038/291568a0

59. BANISTER, J. R., 1984. Pressure wave generated by the Mount St. Helens eruption. J. Geophys. Res. vol. 89, is. D3, pp. 4895–4904. DOI: https://doi.org/10.1029/JD089iD03p04895

60. REED, J. W., 1987. Air pressure waves from Mount St. Helens eruptions. J. Geophys. Res.  vol. 92, is. D10, pp. 11979–11992. DOI: https://doi.org/10.1029/JD092iD10p11979

61. YAMASATO, H., 1997. Quantitative Analysis of Pyroclastic Flows Using Infrasonic and Seismic Data at Unzen Volcano, Japan. J. Phys. Earth. vol. 45, is. 6, pp. 397–416. DOI: https://doi.org/10.4294/jpe1952.45.397

62. RIPEPE, M., CILIBERTO, S. and DELLA SCHIAVA, M., 2001. Time constraints for modeling source dynamics of volcanic explosions at Stromboli. J. Geophys. Res.: Solid Earth. vol. 106, is. B5, pp. 8713–8727. DOI: https://doi.org/10.1029/2000JB900374

63. RIPEPE, M., HARRIS, A. J. L. and CARNIEL, R., 2002. Thermal, seismic and infrasonic evidences of variable degassing rates at Stromboli volcano. J. Volcanol. Geotherm. Res. vol. 118, is. 3-4, pp. 285–297. DOI: https://doi.org/10.1016/S0377-0273(02)00298-6

64. EVERS, L. G. and Haak, H. W., 2005. The detectability of infrasound in The Netherlands from the Italian volcano Mt. Etna. J. Atmos. Sol.-Terr. Phys. vol. 67, is. 3, pp. 259–268. DOI: https://doi.org/10.1016/j.jastp.2004.09.002

65. CHERNOGOR, L. F., 2012. Physics and Ecology of Disasters. Kharkiv: V. N. Karazin Kharkiv National University Publ. (in Russian).

66. DANIELS, F. B., 1962. Generation of Infrasound by Ocean Waves. J. Acoust. Soc. Am. vol. 34, is. 3, pp. 352–353. DOI: https://doi.org/10.1121/1.1928128

67. DONN, W. L. and POSMENTIER, E. S., 1967. Infrasonic waves from the marine storm of April 7, 1966. J. Geophys. Res. vol. 72, is. 8, pp. 2053–2061. DOI: https://doi.org/10.1029/JZ072i008p02053

68. BREKHOVSKIKH, L. M., GONCHAROV, V. V, KURTEPOV, V. M. and NAUGOLNYKH, K. A., 1973. The radiation of infrasound into the atmosphere by surface waves in the ocean. Izv. Atmos. Ocean Phys. vol. 9, no. 9, pp. 899–907. (in Russan).

69. ARENDT, S. and FRITTS, D. C., 2000. Acoustic radiation by ocean surface waves. J. Fluid Mech. vol. 415, pp. 1–21. DOI: https://doi.org/10.1017/S0022112000008636

70. GARCÉS, M., WILLIS, M., HETZER, C., LE PICHON, A. and DROB, D., 2004. On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys. Res. Lett. vol. 31, is. 19, id. L19304. DOI: https://doi.org/10.1029/2004GL020696

71. LE PICHON, A., MAURER, V., RAYMOND, D. and HYVERNAUD, O., 2004. Infrasound from ocean waves observed in Tahiti. Geophys. Res. Lett. vol. 31, is. 19, id. L19103. DOI: https://doi.org/10.1029/2004GL020676

72. WAXLER, R. and Gilbert, K. E., 2006. The radiation of atmospheric microbaroms by ocean waves. J. Acoust. Soc. Am. vol. 119, is. 5, pp. 2651–2664. DOI: 
https://doi.org/10.1121/1.2191607

73. GARCÉS, M., WILLIS, M. and LE PICHON, A., 2010. Infrasonic Observations of Open Ocean Swells in the Pacific: Deciphering the Song of the Sea. In: A. LE PICHON, E. BLANC, A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht: Springer, 235–248. DOI: https://doi.org/10.1007/978-1-4020-9508-5_7

74. HETZER, C. H., GILBERT, K. E., WAXLER, R., and TALMADGE, C. L., 2010. Generation of Microbaroms by Deep-Ocean Hurricanes. In: A. LE PICHON, E. BLANC, A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht: Springer, pp. 249–262. DOI: https://doi.org/10.1007/978-1-4020-9508-5_8

75. GOSTINTSEV, YU. A., IVANOV, E. A., KOPYLOV, N. P. and SHATSKIKH YU. V., 1983. Wave disturbances of the atmosphere due to large fires. Combust., Explos. Shock Waves. vol. 19, is. 4, pp. 427–429. DOI: https://doi.org/10.1007/BF00783639

76. SPIVAK, A. A., RIABOVA, S. A. and KHARLAMOV, V. A., 2019. The Electric Field in the Surface Atmosphere of the Megapolis of Moscow. Geomagn. Aeron. vol. 59, no. 4, pp. 467–478. DOI: https://doi.org/10.1134/S0016793219040169

77. DONN, W. L. and POSMENTIER, E. S., 1964. Ground-coupled air waves from the Great Alaskan Earthquake. J. Geophys. Res. vol. 69, is. 24, pp. 5357–5361. DOI: https://doi.org/10.1029/JZ069i024p05357

78. BOWMAN, G. G. and SHRESTHA, K. L., 1965. Atmospheric pressure waves from the Japanese earthquake on 16 June 1964. Q. J. R. Meteorol. Soc. vol. 91, is. 388, pp. 223–224. DOI: https://doi.org/10.1002/qj.49709138813

79. DAVIES, K. and BAKER, D. M., 1965. Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. J. Geophys. Res. vol. 70, is. 9, pp. 2251–2253. DOI: https://doi.org/10.1029/JZ070i009p02251

80. ROW, R. V., 1966. Evidence of long-period acoustic-gravity waves launched into theFregion by the Alaskan earthquake of March 28, 1964. J. Geophys. Res. vol. 71, is. 1, pp. 343–345. DOI: https://doi.org/10.1029/JZ071i001p00343

81. MIKUMO, T., 1968. Atmospheric pressure waves and tectonic deformation associated with the Alaskan earthquake of March 28, 1964. J. Geophys. Res. vol. 73, is. 6, pp. 2009–2025. DOI: https://doi.org/10.1029/JB073i006p02009

82. COOK, R. K. and BEDARD JR, A. J., 1971. On the Measurement of Infrasound. Geophys. J. R. Astron. Soc. vol. 26, is. 1-4, pp. 5–11. DOI: https://doi.org/10.1111/j.1365-246X.1971.tb03378.x

83. YOUNG, J. M. and GREENE, G. E., 1982. Anomalous infrasound generated by the Alaskan earthquake of 28 March 1964. J. Acoust. Soc. Am. vol. 71, is. 2, pp. 334–339. DOI: https://doi.org/10.1121/1.387457

84. KELLEY, M. C., LIVINGSTON, R. and MCCREADY, M., 1985. Large amplitude thermospheric oscillations induced by an earthquake. Geophys. Res. Lett. vol. 12, is. 9, pp. 577–580. DOI: https://doi.org/10.1029/GL012i009p00577

85. OLSON, J. V., WILSON, C. R. and HANSEN, R. A., 2003. Infrasound associated with the 2002 Denali fault earthquake, Alaska. Geophys. Res. Lett. vol. 30, is. 23, id. 2195. DOI: https://doi.org/10.1029/2003GL018568

86. GARCÉS, M., CARON, P., HETZER, C., LE PICHON, A., BASS, H., DROB, D. and BHATTACHARYYA, J., 2005. Deep infrasound radiated by the Sumatra earthquake and tsunami. Eos. vol. 86, is. 35, pp. 317–320. DOI: https://doi.org/10.1029/2005EO350002

87. LE PICHON, A., HERRY, P., MIALLE, P., VERGOZ, J., BRACHET, N., GARCÉS, M., DROB, D. and CERANNA, L., 2005. Infrasound associated with 2004–2005 large Sumatra earthquakes and tsunami. Geophys. Res. Lett. vol. 32, is. 19, id. L19802. DOI: https://doi.org/10.1029/2005GL023893

88. MUTSCHLECNER, J. P. and WHITAKER, R. W., 2005. Infrasound from earthquakes. J. Geophys. Res: Atmospheres. vol. 110, is. D1, id: D01108. DOI: https://doi.org/10.1029/2004JD005067

89. MIKUMO, T., SHIBUTANI, T., LE PICHON, A., GARCÉS, M., FEE, D., TSUYUKI, T., WATADA, S. and MORII, W., 2008. Low-frequency acoustic-gravity waves from coseismic vertical deformation associated with the 2004 Sumatra-Andaman earthquake (Mw=9.2). J. Geophys. Res: Solid Earth. vol. 113, is. B12, id: B12402. DOI: https://doi.org/10.1029/2008JB005710

90. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO, V. T. and ZHENG, YU., 2019. Dynamical processes in the ionosphere following the moderate earthquake in Japan on 7 July 2018. J. Atmos. Sol.-Terr. Phys. vol. 186, pp. 88–103. DOI: https://doi.org/10.1016/j.jastp.2019.02.003

91. LUO, Y., GUO, Q., ZHENG, Y., GARMASH, K. P., CHERNOGOR, L. F. and SHULGA, S. M., 2019. HF radio-wave characteristic variations over China during moderate earthquake in Japan on September 5, 2018. Visnyk of V. N. Karazin Kharkiv National University, series “Radio Physics and Electronics”. vol. 30, pp. 16–26. (in Russian). DOI: https://doi.org/10.26565/2311-0872-2019-30-02

92. LUO, Y., CHERNOGOR, L. F., GARMASH, K. P., GUO, Q. and ZHENG, YU. Seismic-ionospheric effects: results of radio soundings at oblique incidence. Radio Physics and Radio Astronomy. vol. 25, no. 3, pp. 218–230. (in Ukrainian). DOI: https://doi.org/10.15407/rpra25.03.218

93. GARCÉS, M., CARON, P., HETZER, C., LE PICHON, A., BASS, H., DROB, D. and BHATTACHARYYA, J., 2005. Deep infrasound radiated by the Sumatra earthquake and tsunami. Eos. vol. 86, is. 35, pp. 317–320. DOI: https://doi.org/10.1029/2005EO350002

94. BALACHANDRAN, N. K., 1979. Infrasonic signals from thunder. J. Geophys. Res.: Oceans vol. 84, is. C4, pp. 1735–1745. DOI: https://doi.org/10.1029/JC084iC04p01735

95. BALACHANDRAN, N. K., 1983. Acoustic and electric signals from lightning. J. Geophys. Res.: Oceans. vol. 88, is. C6, pp. 3879–3884. DOI: https://doi.org/10.1029/JC088iC06p03879

96. FARGES, T., BLANC, E., LE PICHON, A., NEUBERT, T. and ALLIN, T. H., 2005. Identification of infrasound produced by sprites during the Sprite2003 campaign. Geophys. Res. Lett. vol. 32, is. 1. Id. L01813. DOI: https://doi.org/10.1029/2004GL021212

97. LIN, T.-L. and LANGSTON, C. A., 2007. Infrasound from thunder: A natural seismic source. Geophys. Res. Lett. vol. 34, is. 14, id. L14304. https://doi.org/10.1029/2007GL030404

98. FARGES, T. and BLANC, E., 2010. Characteristics of infrasound from lightning and sprites near thunderstorm areas. J. Geophys. Res.: Space Physics. vol. 115, is. A6, id. A00E31. DOI: https://doi.org/10.1029/2009JA014700

99. BLANC, E., FARGES, T., LE PICHON, A. and HEINRICH, P., 2014. Ten year observations of gravity waves from thunderstorms in western Africa. J. Geophys. Res.: Atmospheres. vol. 119, is. 11, pp. 6409–6418. DOI: https://doi.org/10.1002/2013JD020499

100. SPIVAK, A. A., RYBNOV, YU. S., SOLOVIEV, S. P. and KHARLAMOV, V. A., 2017. Acoustic and electric precursors of heavy thunderstorm under megalopolis conditions. Geophysical processes and biosphere. vol. 16, no. 4, pp. 81–91. (in Russian). DOI: https://doi.org/10.21455/GPB2017.4-7

101. ROSE, G., OKSMAN, J. and KATAJA, E., 1961. Round-the-World Sound Waves produced by the Nuclear Explosion on October 30, 1961, and their Effect on the Ionosphere at Sodankylä. Nature. vol. 192, no. 4808, pp. 1173–1174. DOI: https://doi.org/10.1038/1921173a0

102. DONN, W. L. and EWING, M., 1962. Atmospheric waves from nuclear explosions. J. Geophys. Res. vol. 67, is. 5, pp. 1855–1866. DOI: https://doi.org/10.1029/JZ067i005p01855

103. DONN, W. L. and EWING, M., 1962. Atmospheric Waves from Nuclear Explosions –
Part II: The Soviet Test of 30 October 1961. J. Atmos. Sci. vol. 19, is. 3, pp. 264–273. DOI: https://doi.org/10.1175/1520-0469(1962)019<0264:AWFNEI>2.0.CO;2

104. FARKAS, E., 1962. Transit of Pressure Waves through New Zealand from the Soviet 50 Megaton Bomb Explosion. Nature. vol. 193, no. 4817, pp. 765–766. DOI: https://doi.org/10.1038/193765a0

105. GARDINER, G. W., 1962. Effects of the nuclear explosion of 30 October 1961. J. Atmos. Terr. Phys. vol. 24, is. 11, pp. 990–993. DOI: https://doi.org/10.1016/0021-9169(62)90146-0

106. PFEFFER, R. L. and ZARICHNY, J., 1962. Acoustic-Gravity Wave Propagation from Nuclear Explosions in the Earth’s Atmosphere. J. Atmos. Sci. vol. 19, is. 3, pp. 256–263. DOI: https://doi.org/10.1175/1520-0469(1962)019<0256:AGWPFN>2.0.CO;2

107. WEXLER, H. and HASS, W. A., 1962. Global atmospheric pressure effects of the October 30, 1961, explosion. J. Geophys. Res. vol. 67, is. 10, pp. 3875–3887. DOI: https://doi.org/10.1029/JZ067i010p03875

108. DONN, W. L., PFEFFER, R. L. and EWING, M., 1963. Propagation of Air Waves from Nuclear Explosions: Nuclear explosions provide data on the relation of air-wave propagation to atmospheric structure. Science. vol. 139, is. 3552, pp. 307–317. DOI: https://doi.org/10.1126/science.139.3552.307

109. WEBB, H. D. and DANIELS, F. B., 1964. Ionospheric oscillations following a nuclear explosion. J. Geophys. Res. vol. 69, is. 3, pp. 545–546. DOI: https://doi.org/10.1029/JZ069i003p00545

110. OKSMAN, J. and KIVINEN, M., 1965. Ionospheric gravity waves caused by nuclear explosions. Geophysica. vol. 9, pp. 119–129.

111. MCCRORY, R. A., 1967. Atmospheric Pressure Waves from Nuclear Explosions. J. Atmos. Sci. vol. 24, is. 4, pp. 443–447. DOI: https://doi.org/10.1175/1520-0469(1967)024<0443:APWFNE>2.0.CO;2

112. ROW, R. V., 1967. Acoustic-gravity waves in the upper atmosphere due to a nuclear detonation and an earthquake. J. Geophys. Res. vol. 72, is. 5, pp. 1599–1610. DOI: https://doi.org/10.1029/JZ072i005p01599

113. CHE, I.-Y., PARK, J., KIM, I., KIM, T. S. and LEE, H.-I., 2014. Infrasound signals from the underground nuclear explosions of North Korea. Geophys. J. Int. vol. 198, is. 1, pp. 495–503. DOI: https://doi.org/10.1093/gji/ggu150

114. KULICHKOV, S. N., 1992. Long-range sound propagation in the atmosphere (Review). Izv. Acad. Nauk SSSR, Fiz. Atmos. Okeana. vol. 28, no. 4, pp. 3–20.

115. BUSH, G. A., IVANOV, E. A., KULICHKOV, S. N. and PEDANOV, M. V., 1997. Some Results of Recording Acoustic Signals From High-Altitude Explosions. Izv. Atmos. Ocean. Phys. vol. 33, no. 1, pp. 59–63.

116. CALAIS, E., MINSTER, J. B., HOFTON, M. A. and HEDLIN, M. A. H., 1998. Ionospheric Signature of Surface Mine Blasts from Global Positioning System Measurements. Geophys. J. Int. vol. 132, is. 1, pp. 191–202. DOI: https://doi.org/10.1046/j.1365-246x.1998.00438.x

117. CHERNOGOR, L. F., 2004. Geophysical effects and geoecological consequences of multiple chemical explosions at ammunition dumps in Artemovsk. Geofizicheskiy Zhurnal. vol. 26, no. 4, 31–44. (in Russian).

118. CHERNOGOR, L. F., 2004. Geophysical Effects and Ecological Consequences of Fire and Explosions of Ammunitions at a Military Base Near Melitopol. Geofizicheskiy Zhurnal. vol. 26, no. 6, 61–73. (in Russian).

119. GIBBONS, S. J., RINGDAL, F. and KVÆRNA, T., 2007. Joint seismic-infrasonic processing of recordings from a repeating source of atmospheric explosions. J. Acoust. Soc. Am. vol. 122, is. 5, id. EL158. DOI: https://doi.org/10.1121/1.2784533

120. CHERNOGOR, L. F. and GARMASH, K. P., 2018. Magnetospheric and Ionospheric Effects Accompanying the Strongest Technogenic Catastrophe. Geomagn. Aeron. vol. 58, is. 5, pp. 673–685. DOI: https://doi.org/10.1134/S0016793218050031

121. CHERNOGOR, L. F., LIASHCHUK, O. I. and SHEVELEV, M. B., 2018. Parameters of infrasonic signals generated in the atmosphere by multiple explosions at an ammunition depot. Radio Phys. Radio Astron. vol. 23, no. 4, pp. 280–293. (in Russian). DOI: https://doi.org/10.15407/rpra23.04.280

122. DONN, W. L., POSMENTIER, E., FEHR, U. and BALACHANDRAN, N. K., 1968. Infrasound at Long Range from Saturn V, 1967. Science. vol. 162, is. 3858, pp. 1116–1120. DOI: https://doi.org/10.1126/science.162.3858.1116

123. KASCHAK, G. R., 1969. Long-range supersonic propagation of infrasonic noise generated by missiles. J. Geophys. Res. vol. 74, is. 3, pp. 914–918. DOI: https://doi.org/10.1029/JA074i003p00914

124. BALACHANDRAN, N. K., DONN, W. L. and KASCHAK, G., 1971. On the Propagation of Infrasound from Rockets: Effects of Winds. J. Acoust. Soc. Am. vol. 50, is. 2A, pp. 397–404. DOI: https://doi.org/10.1121/1.1912649

125. COTTEN, D. and DONN, W. L., 1971. Sound from Apollo rockets in space. Science. vol. 171, is. 3971, pp. 565–567. DOI: https://doi.org/10.1126/science.171.3971.565

126. DONN, W. L., BALACHANDRAN, N. K. and RIND, D., 1975. Tidal wind control of long-range rocket infrasound. J. Geophys. Res. vol. 80, is. 12, pp. 1662–1664. . DOI: https://doi.org/10.1029/JC080i012p01662

127. NOBLE, S. T., 1990. A large-amplitude traveling ionospheric disturbance excited by the space shuttle during launch. J. Geophys. Res.: Space Physics. vol. 95, is. A11, pp. 19037–19044. DOI: https://doi.org/10.1029/JA095iA11p19037

128. LI, Y. Q., JACOBSON, A. R., CARLOS, R. C., MASSEY, R. S., TARANENKO, Y. N. and WU, G., 1994. The blast wave of the Shuttle plume at ionospheric heights. Geophys. Res. Lett. vol. 21, is. 24, pp. 2737–2740. DOI: https://doi.org/10.1029/94GL02548

129. CHERNOGOR, L. F., 2009. Radiophysical and Geomagnetic Effects of Rocket Engine Burn: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).

130. CHERNOGOR, L. F. and BLAUNSTEIN, N., 2014. Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment. Boca Raton, London, New York: CRC Press. Taylor & Francis Group.

131. KAKINAMI, Y., YAMAMOTO, M., CHEN, C.-H., WATANABE, S., LIN, C., LIU, J.-Y. and HABU, H., 2013. Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012. J. Geophys. Res.: Space Physics. vol. 118, is. 8, pp. 5184–5189. DOI: https://doi.org/10.1002/jgra.50508

132. LIN, C. H., LIN, J. T., CHEN, C. H., LIU, J. Y., SUN, Y. Y., KAKINAMI, Y., MATSUMURA, M., CHEN, W. H., LIU, H. and RAU, R. J., 2014. Ionospheric shock waves triggered by rockets. Ann. Geophys. vol. 32, no. 9, pp. 1145–1152. DOI: https://doi.org/10.5194/angeo-32-1145-2014

133. DING, F., WAN, W., MAO, T., WANG, M., NING, B., ZHAO, B. and XIONG, B., 2014. Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophys. Res. Lett. vol. 41, is. 10, pp. 3351–3358. DOI: https://doi.org/10.1002/2014GL060107

134. LIN, C. C. H., SHEN, M.-H., CHOU, M.-Y., CHEN, C.-H., YUE, J., CHEN, P.-C. and MATSUMURA, M., 2017. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett. vol. 44, is. 15, pp. 7578–7586. DOI: https://doi.org/10.1002/2017GL074192

135. CHOU, M.-Y., SHEN, M.-H., LIN, C. C. H., YUE, J., CHEN, C.-H., LIU, J.-Y. and LIN, J.-T., 2018. Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite. Space Weather. vol. 16, is. 2, pp. 172–184. DOI: https://doi.org/10.1002/2017SW001738

136. CHOU, M.-Y., LIN, C. C. H., SHEN, M.-H., YUE, J., HUBA, J. D. and CHEN, C.-H., 2018. Ionospheric Disturbances Triggered by SpaceX Falcon Heavy. Geophys. Res. Lett. vol. 45, is. 13, pp. 6334–6342. DOI: https://doi.org/10.1029/2018GL078088

137. GARMASH, K. P. and CHERNOGOR, L. F., 1998. Near-Earth effects which accompanied high-powerful radio emission action. Zarubezhnaya radioelectronika. Uspekhi sovremennoi radioelektroniki. no. 6, pp. 17–40. (in Russian).

138. GARMASH, K. P. and CHERNOGOR, L. F., 1998. Electromagnetic and geophysics effects in near-Earth plasma, which accompanied high-powerful radio emission action. Electromagnitnye yavleniya. vol. 1, no. 1, pp. 90–110. (in Russian).

139. BURMAKA, V. P., DOMNIN, I. F., URYADOV, V. P. and CHERNOGOR, L. F., 2009. Variations in the Parameters of Scattered Signals and the Ionosphere Connected with Plasma Modification by High-Power Radio Waves. Radiophys. Quantum Electron. vol. 52, is. 11, pp. 774–795. DOI: https://doi.org/10.1007/s11141-010-9191-2

140. CHERNOGOR, L. F., VERTOGRADOV, G. G., URYADOV, V. P., VERTOGRADOVA, E. G. and SHAMOTA, M. A., 2011. Consistent Quasi-Periodic Variations of the Geomagnetic Pulsation Level and Doppler Frequency Shift of Decametric Radio Waves Aspect-Scattered by Artificial Field-Aligned Ionospheric Irregularities. Radiophys. Quantum Electron. vol. 53, is. 12, pp. 688–705. DOI: https://doi.org/10.1007/s11141-011-9262-z

141. CHERNOGOR, L. F., FROLOV, V. L., KOMRAKOV, G. P. and PUSHIN, V. F., 2011. Variations in the ionospheric wave perturbation spectrum during periodic heating of the plasma by high-power high-frequency radio waves. Radiophys. Quantum Electron. vol. 54, no. 2, pp. 75–88. DOI: https://doi.org/10.1007/s11141-011-9272-x

142. DOMNIN, I. F., PANASENKO, S. V., URYADOV, V. P. and CHERNOGOR, L. F., 2012. Results of radiophysical studies of the wave processes in the ionospheric plasma during its heating by high-power radio emission of the Sura facility. Radiophys. Quantum Electron. vol. 55, is. 4, pp. 253–265. DOI: https://doi.org/10.1007/s11141-012-9364-2

143. CHERNOGOR, L. F. and FROLOV, V. L., 2012. Traveling ionospheric disturbances generated due to periodic plasma heating by high-power high-frequency radiation. Radiophys. Quantum Electron. vol. 55, is. 1-2, pp. 13–32. DOI: https://doi.org/10.1007/s11141-012-9346-4

144. CHERNOGOR, L. F., FROLOV, V. L. and PUSHIN V. F., 2012. Infrasound oscillations in the ionosphere affected by high-power radio waves. Radiophys. Quantum Electron. vol. 55, is. 5, pp. 296–308. DOI: https://doi.org/10.1007/s11141-012-9369-x

145. CHERNOGOR, L. F. and FROLOV, V. L., 2013. Features of Propagation of the Acoustic-Gravity Waves Generated by High-Power Periodic Radiation. Radiophys. Quantum Electron. 2013. vol. 56, is. 4, pp. 197–215. DOI: https://doi.org/10.1007/s11141-013-9426-0

146. CHERNOGOR, L. F. and FROLOV, V. L., 2014. Geomagnetic Pulsation Amplitude and Spectrum Variations Accompanying the Ionospheric Heating by High-Power Radio waves from the Sura Facility. Radiophys. Quantum Electron. vol. 57, is. 5, pp. 340–359. DOI: https://doi.org/10.1007/s11141-014-9518-5

147. CHERNOGOR, L. F., 2014. Physics of High-Power Radio Emissions in Geospace: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).

148. CHERNOGOR, L. F., PANASENKO, S. V., FROLOV, V. L. and DOMNIN, I. F., 2015. Observations of the Ionospheric Wave Disturbances Using the Kharkov Incoherent Scatter Radar upon RF Heating of the Near-Earth Plasma. Radiophys. Quantum Electron. vol. 58, is. 2, pp. 79–91. DOI: https://doi.org/10.1007/s11141-015-9583-4

149. CHERNOGOR, L. F., GARMASH, K. P. and FROLOV, V. L., 2019. Large-scale disturbances in the lower and middle ionosphere accompanying its modification by the Sura heater. Radiophys. Quantum Electron. vol. 62, is. 6, pp. 395–411. DOI: https://doi.org/10.1007/s11141-019-09986-7

150. BALACHANDRAN, N. K., DONN, W. L. and RIND, D. H., 1977. Concorde Sonic Booms as an Atmospheric Probe. Science. vol. 197, is. 4298, pp. 47–49. DOI: https://doi.org/10.1126/science.197.4298.47

151. DONN, W. L., 1978. Exploring the Atmosphere with Sonic Booms: Or How I Learned to Love the Concorde. Am. Sci. vol 66, is. 6, pp. 724–733.

152. DONN, W. L. and RIND, D., 1979. Monitoring Stratospheric Winds with Concorde-Generated Infrasound. J. Appl. Meteor. vol. 18, is. 7, pp. 945–952. DOI: https://doi.org/10.1175/1520-0450(1979)018<0945:MSWWCG>2.0.CO;2

153. AFANASIEVA, N. A., PLYATSUK, L. D., FILATOV, L. G. and TRUNOVA, I. A., 2014. Pulse infrasound signal produced by a wind turbine. Principles of assessment. Eastern-European Journal of Enterprise Technologies. vol. 6, no. 10(72), pp. 13–19. (in Russian). DOI: https://doi.org/10.15587/1729-4061.2014.30979

154. SPIVAK, A. A., LOKTEV, D. N., RYBNOV, YU. S., SOLOVIEV, S. P. and KHARLAMOV, V. A., 2016. Geophysical fields of a megalopolis. Izv. Atmos. Ocean. Phys. vol. 52, is. 8, pp. 841–852. DOI: https://doi.org/10.1134/S0001433816080107

155. CHERNOGOR, L. F., 2017. Electric and magnetic effects of infrasound in the atmosphere. In: Proceedings of 3rd All-Russian Conference on Global electric circuit. Borok geophysical observatory of Shmidt Institute of Physics of the Earth, RAS. Yaroslavl’, Russia: Filigran’ Publ., pp. 11–12. (in Russian).

156. KANAMORI, H., MORI, J., ANDERSON, D. L. and HEATON, T. H., 1991. Seismic excitation by the space shuttle Columbia. Nature. vol. 349, no. 6312, pp. 781–782. DOI: https://doi.org/10.1038/349781a0

157. YAMPOLSKI, YU. M., ZALIZOVSKI, A. V., LITVINENKO, L. M., LIZUNOV, G. V., GROVES, K. and MOLDWIN, M., 2004. Magnetic Field Variations in Antarctica and the Conjugate Region (New England) Stimulated by Cyclone Activity. Radio Phys. Radio Astron. vol. 9, no. 2, pp. 130–152. (in Russian).

158. CHEKRYZHOV, V. M., SVIRKUNOV, P. N. and KOZLOV, S. V., 2019. The Influence of Cyclonic Activity on the Geomagnetic Field Disturbance. Geomagn. Aeron. vol. 59, is. 1, pp. 53–61. DOI: https://doi.org/10.1134/S0016793219010031

159. SOLOVIEV, S. P., RYBNOV, YU. S. and KHARLAMOV, V. A., 2015. The synchronic disturbances of the acoustic and electric fields caused by artificial and natural sources. In: V. V. ADUSHKIN and G. G. KOCHERYAN, eds. Abstracts of 3rd All-Russian Seminar–Meeting on Trigger Effects in Geosystems. Moscow, Russia: GEOS Publ. p. 71. (in Russian).

160. SURKOV, V. V., 2000. Electromagnetic Effects Caused by Earthquakes and Explosions. Moscow, Russia: MEPhI Press. (in Russian).

161. CHERNOGOR, L. F., 2018. Physical effects of the Romanian meteoroid. 2. Space Sci. Technol. vol. 24, no. 2, pp. 18–35. (in Russian). DOI: https://doi.org/10.15407/knit2018.02.018

162. CHERNOGOR, L. F., 2019. Physical Effects of the Lipetsk Meteoroid: 3. Kinemat. Phys. Celest. Bodies. vol. 35, is. 6, pp. 271–285. DOI: https://doi.org/10.3103/S0884591319060023

163. CHALMERS, J A., 1967. Atmospheric electricity. Oxford, New York: Pergamon Press. DOI: https://doi.org/10.1016/B978-0-08-012005-8.50019-7


Keywords


acoustic and atmospheric gravity waves; near-Earth atmosphere; volume charge; atmospheric pressure disturbances; electric field; magnetic field

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)