DETERMINATION OF THE ROTATION MEASURE VALUE SIGN WHEN RECEIVING A SINGLE LINEAR POLARIZATION OF THE PULSAR RADIO EMISSION

DOI: https://doi.org/10.15407/rpra25.04.253

O. M. Ulyanov, A. I. Shevtsova, S. M. Yerin

Abstract


Purpose: The studies of pulsars allow enriching our knowledge in determination of parameters of both the exotic electron-positron plasma in the pulsar magnetosphere with strong magnetic field and the ordinary ion-electron plasma of the interstellar medium, which exists in a weak magnetic field. To determine the parameters of the both plasma types it is reasonable to use polarization characteristics of a pulsed radio emission of pulsars. An accurate determination of these characteristics is quite a complex problem. For its solving, primarily we have to determine two parameters of the propagation medium – its dispersion and rotation measures. Their absolute values can be determined with the relative precision of 10-4, but the problem of rotation measure value sign determination arises. This sign depends on the interstellar magnetic field direction along the line of sight. Hear, a new method of rotation measure value sign determination is proposed.

Design/methodology/approach: Muller polarization matrices are usually used for determination of such a propagation parameter as the rotation measure absolute value. When only one linear polarization is received, using of these matrices allows quite accurate determining the absolute value of the rotation measure, but not the sign of this parameter due to a certain symmetry of these matrices with respect to the direction of the linear polarization rotation plane. If we complement the system of equations, which determines the rotation measure value, with some new additional components, which take into account the contributions of the Earth ionosphere and magnetosphere to the rotation measure value, one can notice that this contribution is always positive in the Southern magnetic hemisphere (the majority of the Northern geographical hemisphere) and is always negative in the Northern magnetic hemisphere (the majority of the Southern geographical hemisphere). Moreover, the absolute value of this contribution is maximal at noon and minimal at midnight, when the concentration of ions in the Earth ionosphere is maximal and minimal, respectively. Accounting for these regularities allows to determine not only the absolute value of the rotation measure, but also its sign by means of two independent time-shifted estimations of the observed absolute value of this parameter for various ionization degrees of the Earth ionosphere.

Findings: We show that using of additional equations, which take into account the contribution of the Earth ionosphere and magnetosphere to the value of the rotation measure parameter, allows full determination of this parameter accounting for the sign of this value even for the antennas, which can record a single linear polarization only. This approach allows to determine all polarization parameters of the pulsar radio emission as well as of the pulsed or continuum polarized radio emission of other cosmic sources.

Conclusions: The paper presents the results of measurement of the rotation measure for the two closest to the Earth pulsars, namely J0814+7429 (B0809+74), J0953+0755 (B0950+08), and the comparison of the proposed technique for this parameter determination with other existing techniques.

Key words: pulse, dispersion measure, rotation measure, plasma, polarization, pulsar, radio telescope

Manuscript submitted 12.11.2020 

Radio phys. radio astron. 2020, 25(4): 253-267

REFERENCES

1. HEWISH, A., BELL, S. J., PILKINGTON, J. D. H., SCOTT, P. F. and COLLINS, R. A., 1968. Observation of a Rapidly Pulsating Radio Source. Nature. vol. 217, no. 5130, pp. 709–713. DOI: 10.1038/217709a0

2. RADHAKRISHNAN, V. and COOKE, D. J., 1969. Magnetic Poles and the Polarization Structure of Pulsar Radiation. Astrophys. Lett. vol. 3, pp. 225–229.

3. KOMESAROFF, M. M., MORRIS, D. and COOKE, D. J., 1970. Linear Polarization and Pulse Shape Measurements on Nine Pulsars. Astrophys. Lett. vol. 5, pp. 37–41.

4. BACKER, D. C., RANKIN, J. M. and CAMPBELL, D. B., 1976. Orthogonal mode emission in geometric models of pulsar polarisation. Nature. vol. 263, no. 5574, pp. 202–207. DOI: 10.1038/263202a0

5. EDWARDS, R. T., 2004. The polarization of drifting subpulses. Astron. Astrophys. vol 426, is. 2, pp. 677–686. DOI: 10.1051/0004-6361:20041029

6. ULYANOV, O. M., SHEVTSOVA, A. I., MUKHA, D. V. and SEREDKINA, A. A., 2013. Investigation of the Earth ionosphere using the radio emission of pulsars. Balt. Astron. vol. 22, pp. 53–65. DOI: 10.1515/astro-2017-0147

7. ULYANOV, O. M., SHEVTSOVA, A. I. and SKORYK, A. O., 2013. Polarization Sounding of Pulsar Magnetosphere. Bulletin of the Crimean Astrophysical Observatory. vol. 109, no. 4, pp 159–168. (in Russian).

8. ULYANOV, O. M., SHEVTSOVA, A. I. and SKORYK, A. O., 2014. Algorithms of Polarization Parameters Determination of Pulsar Radio Emission. Radio Phys. Radio Astron. vol. 19, no. 2, pp. 101–110. (in Russian). DOI: 10.15407/rpra19.02.101

9. NOUTSOS, A., SOBEY, C., KONDRATIEV, V. I., WELTEVREDE, P., VERBIEST, J. P. W., KARASTERGIOU, A., KRAMER,M., KUNIYOSHI, M., ALEXOV, A., BRETON, R. P., BILOUS, A. V., COOPER, S., FALCKE, H., GRIEßMEIER, J.-M., HASSALL, T. E., HESSELS, J. W. T., KEANE, E. F., OSŁOWSKI, S., PILIA, M., SERYLAK, M., STAPPERS, B. W., TER VEEN, S., VAN LEEUWEN, J., ZAGKOURIS, K., ANDERSON, K., BÄHREN, L., BELL, M., BRODERICK, J., CARBONE, D., CENDES, Y., COENEN, T., CORBEL, S., EISLÖFFEL, J., FENDER, R., GARSDEN, H., JONKER, P., LAW, C., MARKOFF, S., MASTERS, J., MILLER-JONES, J., MOLENAAR, G., OSTEN, R., PIETKA, M., ROL, E., ROWLINSON, A., SCHEERS, B., SPREEUW, H., STALEY, T., STEWART, A., SWINBANK, J., WIJERS, R., WIJNANDS, R., WISE, M., ZARKA, P. and VAN DER HORST, A., 2015. Pulsar polarisation below 200 MHz: Average profiles and propagation effects. Astron. Astrophys. vol 576, id. A62. DOI: 10.1051/0004-6361/201425186

10. ULYANOV, O. M., SHEVTSOVA, A. I., ZAKHARENKO, V. V., SKORYK, A. O., VASYLIEVA, I. Y. and PLAKHOV, M. S., 2018. Time and Polarization Radiation Characteristics of PSR J0242+6256 at the Decameter Wavelength Range. Kinemat. Phys. Celest. Bodies. vol. 34, no. 4, pp. 174–183. DOI: 10.3103/S0884591318040062.

11. DIKE, V., TAYLOR, G. B., DOWELL, J. and STOVALL, K., 2020. Detecting pulsar polarization below 100 MHz with the Long Wavelength Array. Mon. Not. R. Astron. Soc. vol. 496, is. 3, pp. 3623–3634. DOI: 10.1093/mnras/staa1788

12. MELROSE, D. B. and STONEHAM, R. J., 1977. The natural wave modes in a pulsar magnetosphere. Proc. Astron. Soc. Aust. vol. 3, is. 2, pp. 120–122. DOI: 10.1017/S1323358000015010

13. PETROVA, S. A., 2001. On the origin of orthogonal polarization modes in pulsar radio emission. Astron. Astrophys. vol. 378, is. 3, pp. 883–897. DOI: 10.1051/0004-6361:20011297

14. SCHNITZELER, D. H. F. M., EATOUGH, R. P., FERRIÈRE, K., KRAMER, M., LEE, K. J., NOUTSOS, A. and SHANNON, R. M., 2016. Radio polarimetry of Galactic Centre pulsars. Mon. Not. R. Astron. Soc. vol. 459, is. 3, pp. 3005–3011. DOI: 10.1093/mnras/stw841

15. MITRA, D., BASU, R., MACIESIAK, K., SKRZYPCZAK, A., MELIKIDZE, G. I., SZARY, A. and KRZESZOWSKI, K., 2016. Meterwavelength Single-Pulse Polarimetric Emission Survey. Astrophys. J. vol. 833, is. 1, id. 28. DOI: 10.3847/1538-4357/833/1/28

16. GINZBURG, V. L., 1987. Theoretical physics and astrophysics. Moscow, Russia: Nauka Publ. (in Russian).

17. ZHELEZNYAKOV, V. V., 1997. Radiation in astrophysical plasma. Moscow, Russia: Janus-K Publ. (in Russian).

18. PETROVA, S. A., 2006. Polarization transfer in a pulsar magnetosphere. Mon. Not. R. Astron. Soc. vol. 366, is. 4, pp. 1539–1550. DOI: 10.1111/j.1365-2966.2005.09941.x

19. ULYANOV, O. M., SKORYK, A. O., SHEVTSOVA, A. I., PLAKHOV, M. S. and ULYANOVA, O. O., 2016. Detection of the fine structure of the pulsar J0953+0755 radio emission in the decametre wave range. Mon. Not. R. Astron. Soc. vol. 455, is. 1, pp. 150–157. DOI: 10.1093/mnras/stv2172

20. NOVIKOV, A. YU., POPOV, M. V., SOGLASNOV, V. A., BRUK, YU. M. and USTIMENKO, B. YU., 1984. Observations of pulsar PSR 0809+74 at a frequency of 25 MHz with a time resolution of 100 μsec. Sov. Astron. vol. 28, no. 2, pp. 199–201.

21. ULYANOV, O. M., ZAKHARENKO, V. V., KONOVALENKO, A. A., LECACHEUX, A., ROSOLEN, C. and RUCKER, H. O., 2006. Detection of Individual Pulses from Pulsars B0809+74, B0834+06, B0943+10, B0950+08 and B1133+16 in the Decameter Wavelengths. Radio Phys. Radio Astron. vol. 11, no. 2, pp. 113–133. (in Russian).

22. POPOV, M. V., KUZ’MIN, A. D., ULYANOV, O. M., DESHPANDE, A. A., ERSHOV, A. A., ZAKHARENKO, V. V., KONDRAT’EV, V. I., KOSTYUK, S. V., LOSOVSKIĬ, B. YA. and SOGLASNOV, V. A., 2006. Instantaneous Radio Spectra of Giant Pulses from the Crab Pulsar from Decimeter to Decameter Wavelengths. Astron. Rep. vol. 50, is. 7, pp. 562–568. DOI: 10.1134/S1063772906070067

23. ULYANOV, O. M., DESHPANDE, A., ZAKHARENKO, V. V., ASGEKAR, A. and SHANKAR, U., 2007. Two-Frequency Observations of Six Pulsars Using UTR-2 and GEETEE Radio Telescopes. Radio Phys. Radio Astron. vol. 12, no. 1, pp. 5–19. (in Russian).

24. UL’YANOV, O. M., ZAKHARENKO, V. V. and BRUCK, YU. M., 2008. The parameters of pulsar subpulse emission at decameter wavelengths. Astron. Rep. vol. 52, is. 11, pp. 917–924. DOI: 10.1134/S1063772908110061

25. HANKINS, T. H. and RICKETT, B. J., 1975. Pulsar signal processing. In: B. ALDER, S. FERNBACH and M. ROTENBERG, eds. Methods in Computational Physics: Advances in Research and Applications. Volume 14 – Radio Astronomy. New York, London: Academic Press Ink., pp. 55–129. DOI: 10.1016/B978-0-12-460814-6.50002-4

26. SKORYK, A. O., ULYANOV, O. M., ZAKHARENKO, V. V., SHEVTSOVA, A. I., VASYLIEVA, I. Y., PLAKHOV, M. S. and KRAVTSOV, I. M., 2017. Fine structure of anomalously intense pulses of PSR J0814+7429 radio emission in the decameter range. Radio Phys. Radio Astron. vol. 22, no. 2, pp. 93–111. DOI: https://doi.org/10.15407/rpra22.02.093

27. COLE, T. W. and PILKINGTON, J. D. H., 1968. Search for Pulsating Radio Sources in the Declination Range +44°<δ<+90°. Nature. vol. 219, no. 5154, pp. 574–576. DOI:10.1038/219574a0

28. CSIRO., 2020. ATNF Pulsar Catalogue. Australia Telescope National Facility. [online table]. [viewed 24 October 2020]. Available from: http://www.atnf.csiro.au/people/pulsar/psrcat/

29. MANCHESTER, R. N., HOBBS, G. B., TEOH, A. and HOBBS, M., 2005. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. vol. 129, is. 4, pp. 1993–2006. DOI: 10.1086/428488

30. UL’YANOV, O. M. and ZAKHARENKO, V. V., 2012. Energy of anomalously intense pulsar pulses at decameter wavelengths. Astron. Rep. vol. 56, is. 6, pp. 417–429. DOI: 10.1134/S1063772912060054

31. MANCHESTER, R. N., 1972. Pulsar Rotation and Dispersion Measures and the Galactic Magnetic Field. Astrophys. J. vol. 172, pp. 43–52. DOI: 10.1086/151326

32. ULYANOV, O. M., SHEVTSOVA, A. I. and SKORYK, A. O., 2014. Polarization Sounding of Pulsar Magnetosphere (Part I). ArXiv E-Prints. [online]. [viewed 24 October 2020].Available from: arXiv:1411.6453



Keywords


pulse; dispersion measure; rotation measure; plasma; polarization; pulsar; radio telescope

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)