INVESTIGATIONS OF COSMIC SOURCES RADIOEMISSION SCINTILLATIONS DUE TO INTERPLANETARY PLASMA IRREGULARITIES AT THE INSTITUTE OF RADIO ASTRONOMY, NAS UKRAINE

DOI: https://doi.org/10.15407/rpra26.02.148

M. M. Kalinichenko, N. V. Kuhai, O. O. Konovalenko, A. I. Brazhenko, I. M. Bubnov, S. M. Yerin, H. O. Rucker, P. Zarka, A. Lecacheux, O. L. Ivantyshyn, O. O. Lytvynenko, O. I. Romanchuk, A. V. Frantsuzenko

Abstract


Purpose: Review of investigations of cosmic sources radioemission scintillations due to interplanetary plasma irregularities made at the Institute of Radio Astronomy of the National Academy of Sciences of Ukraine, from the first observations in the mid-70s until now.

Design/methodology/approach: In the course of preparation of this paper, the authors have reviewed, analyzed and summarized the information being published in the home and foreign publications, and reported at scientific conferences.

Findings: The investigations of the interplanetary scintillations carried out at the Institute of Radio Astronomy, NAS Ukraine have been reviewed. A retrospective discussion has been made on how in the course of these researches the knowledge about the basic parameters of interplanetary scintillations in the decameter wavelength range, as well as that on the important parameters of the solar wind and its structure, have been obtained. Also, various methods of processing and analysis of experimental data were offered, and new means for receiving cosmic radiation were created. The place and importance of the discussed researches for the world science are shown.

Conclusions: Over the years since the beginning of the research, the think tank of the Department of Low-Frequency Radio Astronomy of the Institute of Radio Astronomy, NAS Ukraine has obtained a number of new relevant results, which bring Ukraine into the cohort of world centers of interplanetary scintillation researches. The construction of a new GURT radio telescope, among other things, creates new prospects for the development of this relevant line of investigation.

Key words: interplanetary scintillations; decameter wavelength range; solar wind; solar wind stream structure; coronal mass ejection

Manuscript submitted  11.01.2021

Radio phys. radio astron. 2021, 26(2): 148-164

REFERENCES

1. KONOVALENKO, A., SODIN, L., ZAKHARENKO, V., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., TOKARSKY, P., MELNIK, V., KALINICHENKO, N., STANISLAVSKY, A., KOLIADIN, V., SHEPELEV, V., DOROVSKYY, V., RYABOV, V., KOVAL, A., BUBNOV, I., YERIN, S., GRIDIN A., KULISHENKO, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., REZNIK, A., KVASOV, G., MUKHA, D., LITVINENKO, G., KHRISTENKO, A., SHEVCHENKO, V. V., SHEVCHENKO, V. A., BELOV, A., RUDAVIN, E., VASYLIEVA, I., MIROSHNICHENKO, A., VASILENKO, N., OLYAK, M., MYLOSTNA, K., SKORYK, A., SHEVTSOVA, A., PLAKHOV, M., KRAVTSOV, I., VOLVACH, Y., LYTVINENKO, O., SHEVCHUK, N., ZHOUK,I., BOVKUN, V., ANTONOV, A., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHIN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A., GRIEßMEIER, J.-M., TAGGER, M., GIRARD, J., CHARRIER, D., BRIAND, C. and MANN, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. ExpAstron. vol. 42, is. 1, pp. 11–48. DOI: https://doi.org/10.1007/s10686-016-9498-x

2. HEWISH, A., SCOTT, P. F. and WILLS, D., 1964. Interplanetary scintillations of small diameter radio sources. Nature. vol. 203, no. 4951, pp. 1214–1217. DOI: https://doi.org/10.1038/2031214a0

3. ERSKINE, F. T., CRONYN, W. M., SHAWHAN, S. D., ROELOF, E. C. and GOTWOLS, B. L., 1978. Interplanetary scintillation at large elongation angles: Response to solar wind density structure. J. Geophys. Res. Space Phys. vol. 83, is. A9, pp. 4153–4164. DOI: https://doi.org/10.1029/JA083iA09p04153

4. ZHUK, I. N., 1980. Scintillation studies of cosmic source angular structure (Review). Radiophys. Quantum Electron. vol. 23, no. 8, pp. 597–615. DOI: https://doi.org/10.1007/BF01041203

5. COHEN, M. H., 1969. High-resolution observations of radio sources. Ann. Rev. Astron. Astrophys. vol. 7, is. 1, pp. 619–664. DOI: https://doi.org/10.1146/annurev.aa.07.090169.003155

6. LOTOVA, N. A., 1968. Radio astronomical investigations of the inhomogeneous structure of the near-solar plasma. Sov. Phys. Usp. vol. 11, is. 3, pp. 424–434. DOI: https://doi.org/10.1070/PU1968v011n03ABEH003945

7. JOKIPII, J. R., 1973. Turbulence and Scintillations in the Interplanetary Plasma. Ann. Rev. Astron. Astrophys. vol. 11, pp. 1–28. DOI: https://doi.org/10.1146/annurev.aa.11.090173.000245

8. HEWISH, A., DENNISON, P. A. and PILKINGTON, J. D. H., 1966. Measurements of the Size and Motion of the Irregularities in the Interplanetary Medium. Nature. vol. 209, no. 5029, pp. 1188–1189. DOI: https://doi.org/10.1038/2091188a0

9. LITTLE, L. T. and HEWISH, A., 1966. Interplanetary Scintillation and its Relation to the Angular Structure of Radio Sources. Mon. Not. R. Astron. Soc. vol. 134, is. 3, pp. 221–237. DOI: https://doi.org/10.1093/mnras/134.3.221

10. DENNISON, P. A. and HEWISH, A., 1967. The Solar Wind outside the Plane of the Ecliptic. Nature. vol. 213, no. 5074, pp. 343–346. DOI: https://doi.org/10.1038/213343a0

11. PHILLIPS, J. L., BALOGH, A., BAME, S. J., GOLDSTEIN, B. E., GOSLING, J. T., HOEKSEMA, J. T., MCCOMAS, D. J., NEUGEBAUER, M., SHEELEY, N. R. and WANG, Y.-M., 1994. ULYSSES at  south: constant immersion in the high-speed solar wind. Geophys. Res. Lett. vol. 21, is. 12, pp. 1105–1108. DOI: https://doi.org/10.1029/94GL01065

12. MANOHARAN, P. K. and ANANTHAKRISHNAN, S., 1990. Determination of solar-wind velocities using single-station measurements of interplanetary scintillations. Mon. Not. R. Astron. Soc. vol. 244, is. 4, pp. 691–695.

13. VITKEVICH, V. V. and VLASOV, V. I., 1970. Radioastronomical investigations of the drift of the inhomogeneous interplanetary plasma. Sov. Astron. vol. 13, no. 4, pp. 669–676.

14. EKERS, R. D. and LITTLE, L. T., 1971. The Motion of the Solar Wind Close to the Sun. Astron. Astrophys. vol. 10, pp. 310–316.

15. GOLLEY, M. G. and DENNISON, P. A., 1970. Dispersion analysis of interplanetary scintillation. Planet. Space Sci. vol. 18, is. 1, pp. 95–101. DOI: https://doi.org/10.1016/0032-0633(70)90069-3

16. LOTOVA, N. A. and CHASHEI, I. V., 1978. Velocity distribution in the interplanetary medium from observations of scintillations. Geomagnetizm i Aeronomiia. vol. 18, no. 5, pp. 809–817. (in Russian). 

17. READHEAD, A. C. S., 1971. Interplanetary Scintillation of Radio Sources at Metre Wavelengths – II: Theory. Mon. Not. R. Astron. Soc. vol. 155, is. 2, pp. 185–197. DOI: https://doi.org/10.1093/mnras/155.2.185

18. SPANGLER, S. R. and MEYERS, K. A., 1978. Frequency dependence of compact structure in extended extragalactic radio sources. Astron. J. vol. 83, is 6, pp. 547–559. DOI: https://doi.org/10.1086/112234

19. ALEKSEEV, I. A., ILIASOV, YU. P., KUTUZOV, S. M., KHRUPOVA, G. A., SHISHOV, V. I. and SHISHOVA, T. D., 1976. Influence of dimensions of radio sources on the form of temporal spectra of interplanetary scintillations. Sov. Astron. Lett. vol. 2, no. 3, pp. 160–165.

20. SHISHOV, V. I. and SHISHOVA, T. D., 1979. Influence of source sizes on the spectra of interplanetary scintillations. Observations. SovAstron. vol. 23, no. 3, pp. 345–350.

21. ARTYUKH, V. S. and RYABOV, B. P., 1977. Scintillation of 3C 48, 3C 273 and 3C 295 at 25 MHz. Sov. Astron. vol. 21, no. 5, pp. 540–542.

22. BOVKOON, V. P. and ZHOUCK, I. N., 1981. Spectra of scintillations due to ionospheric and interplanetary plasma inhomogeneities and a possibility of their separation in the decametric wave range. Doklady AN USSR. Ser. A. no. 6, pp. 69–71. (in Russian).

23. BOVKOON, V. P. and ZHOUCK, I. N., 1981. Scintillations of cosmic radio sources in the decameter waveband. I. Spectra of scintillations due to ionospheric and interplanetary plasma fluctuations and the possibility of their separation. Astrophys. Space Sci. vol. 79, pp. 165–180. DOI: https://doi.org/10.1007/BF00655914

24. BOVKUN, V. P. and ZHUK, I. N., 1982. Solar-wind turbulence spectrum and velocity at elongations of 90–150º. Radiophys. Quantum Electron. vol. 25, is. 7, pp. 513–518. DOI: https://doi.org/10.1007/BF01040222

25. BOVKOON, V. P. and ZHOUCK, I. N., 1984. Fine structure of the radio source 4C 21.53 in the decameter waveband. Sov. Astron. vol. 28, no. 6, pp. 648–651.

26. SALPETER, E. E., 1967. Interplanetary Scintillations. I. Theory. Astrophys. J. vol. 147, no. 2, pp. 433–448. DOI: https://doi.org/10.1086/149027

27. CRONYN, W. M., 1970. The Analysis of Radio Scattering and Space-Probe Observations of Small-Scale Structure in the Interplanetary Medium. Astrophys. J. vol. 161, pp. 755–763. DOI: https://doi.org/10.1086/150576

28. BOVKUN, V. P., ZHUK, I. N. and MEN, A. V., 1981. The Structure of the Radio Sources 3C196 and 3C280. Sov. Astron. Lett. vol. 7, no. 3, pp. 192–194.

29. BOVKUN, V. P., ZHUK, I. N. and SOBOLEV, YA. M., 1987. The Low-Frequency Compact Source in the Crab Nebula. Sov. Astron.vol. 31, no. 4, pp. 385–388.

30. BOVKOON, V. P. and ZHOUCK, I. N., 1992. Scintillation of cosmic sources in the decameter radio-wave range on inhomogeneities of the interplanetary plasma and the ionosphere. Kosmicheskaya Nauka i Tekhnika. vol. 7, no. 7, pp. 80–91. (in Russian).

31. BOVKOON, V. P. and ZHOUCK, I. N., 1981. Observations of compact source scintillations in the Crab Nebula and CAS A in the decameter range. Doklady AN USSR. Seriya A.no. 7, pp. 57–60. (in Russian).

32. BOVKOON, V. P., BRAUDE, S. YA. and MEGN, A. V., 1982. Observations of Cassiopeia A at 20 and 25 MHz with the URAN-1 interferometer. Astrophys. Space Sci.vol. 81, is. 1-2, pp. 221–230. DOI: https://doi.org/10.1007/BF00676147

33. KALINICHENKO, N. N., 2009. A search for compact radio sources in supernova remnants using the interplanetary scintillation technique. Astrophys. Space Sci. vol. 319, no. 2, pp. 131–138. DOI: https://doi.org/10.1007/s10509-008-9960-y

34. FESEN, R. A., PAVLOV, G. G. and SANWAL, 2006. D. Near-infrared and optical limits for the central X-ray point source in the Cassiopeia A supernova remnant. Astrophys. J. vol. 636, is. 2, pp. 848–858. DOI: https://doi.org/10.1086/498087

35. CHAKRABARTY, D., PIVOVAROFF, M. J., HERNQUIST, L. E., HEYL, J. S. and NARAYAN, R., 2001. The central X-ray point source in Cassiopeia A. Astrophys. J. vol. 548, no. 2, pp. 800–810. DOI: https://doi.org/10.1086/318994

36. FALKOVICH, I. S., KALINICHENKO, N. N., GRIDIN, A. A. and BUBNOV, I. N., 2004. On the Possibility of Broadband IPS Observations at Decameter Waves. Radio Phys. Radio Astron. vol. 9, no. 2, pp. 121–129. (in Russian).

37. FALKOVICH, I. S., GRIDIN, A. A., KALINICHENKO, N. N. and BUBNOV, I. N., 2005. Sixteen-Band Correlation Radiometer for IPS Observations. Radio Phys. Radio Astron. vol. 10, no. 4, pp. 392–397. (in Russian).

38. KONOVALENKO, A. A., KALINICHENKO, N. N., RUCKER, H O., LECACHEUX, A., FISCHER, G., ZARKA, P., ZAKHARENKO, V. V., MYLOSTNA,K. Y., GRIEßMEIER, J.-M., ABRANIN, E. P., FALKOVICH, I. S., SIDORCHUK, K. M., KURTH, W. S., KAISER, M. L. and GURNETT, D. A., 2013. Earliest recorded ground-based decameter wavelength observations of Saturn’s lightning during the giant E-storm detected by Cassini spacecraft in early 2006. Icarusvol. 224, is. 1, pp. 14–23. DOI: https://doi.org/10.1016/j.icarus.2012.07.024

39. ZAKHARENKO, V., KONOVALENKO, A., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., KOLIADIN, V., KALINICHENKO, N., STANISLAVSKY, A., DOROVSKYY, V., SHEPELEV, V., BUBNOV, I., YERIN, S., MELNIK, V., KOVAL, A., SHEVCHUK, N., VASYLIEVA, V., MYLOSTNA, K., SHEVTSOVA, A., SKORYK, A., KRAVTSOV, I., VOLVACH, Y., PLAKHOV, M., VASILENKO, N., VASYLKIVSKYI, Y., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., RYABOV, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., KVASOV, G., MUKHA, D., LITVINENKO, G., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHYN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A. and GRIEßMEIER J.-M., 2016. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. JAstronInstrum. vol. 5, no. 4, id. 1641010. DOI: https://doi.org/10.1142/S2251171716410105

40. KALINICHENKO, N. N., OLYAK, M. R., KONOVALENKO, A. A., BRAZHENKO, A. I., KUHAI, N. V. and ROMANCHUK, A. I., 2019. Large-Scale Structure of Solar Wind beyond the Earth’s Orbit: Reconstruction Using the Data of Two-Site Measurements of Interplanetary Scintillations in the Decameter Radio Range. Kinemat. Phys. Celest. Bodies. vol. 35, no. 1, pp. 17–27. DOI: https://doi.org/10.3103/S0884591319010033

41. KALINICHENKO, N. N., FALKOVICH, I. S., KONOVALENKO, O. O. and BRAZHENKO, A. I., 2013. Separation of Interplanetary and Ionospheric Scintillations of Cosmic Sources at Decameter Wavelengths. Radio Phys. Radio Astron. vol. 18, no. 3, pp. 210–219. (in Russian).

42. SCHWENN, R., 1990. Large-Scale Structure of the Interplanetary Medium. In: R. SCHWENN and E. MARSCH, eds. Physics of the Inner Heliosphere. Physics and Chemistry in Space, Space and Solar Phycics, vol 20. Berlin, Heidelberg: Springer-Verlag, pp. 99–181. DOI: https://doi.org/10.1007/978-3-642-75361-9_3

43. COLES, W. A., 1996. A bimodal model of the solar wind speed. Astrophys. Space Sci. vol. 243, is. 1, pp. 87–96. DOI: https://doi.org/10.1007/BF00644037

44. BRUECKNER, G. E., 1974. The Behaviour of the Outer Solar Corona n to  during a Large Solar Flare Observed from OSO-7 in White Light. In: G. NEWKIRK, ed. Coronal Disturbances. International Astronomical Union. vol. 54. Dorbrecht: Springer, pp. 333–334. DOI: https://doi.org/10.1007/978-94-010-2257-6_35

45. KALINICHENKO, N. N., KONOVALENKO, O. O., BRAZHENKO, A. I. and SOLOV’EV, V. V., 2013. 2011 February 15 CME in the Interplanetary Medium by Observations of Radio Source Scintillations at the Decameter Wavelengths. Radio Phys. Radio Astron. vol. 18, no. 4, pp. 301–308. (in Russian).

46. RYTOV, S. M. (ed.), KRAVTSOV, YU. A. and TATARSKII, V. I., 1978. Principles of statistical radiophysics. Vol. ІІ. Random fields. Moscow, Russia: Nauka Publ. (in Russian).

47. FEYNMAN, R. P. and HIBBS, A. R., 1965. Quantum Mechanics and Path Integrals. New York: McGraw-Hill Companies, Inc.

48. DASHEN, R., 1979. Path Integrals for Waves in Random Media. J. Math. Phys. vol. 20, is. 5, pp. 894–920. DOI: https://doi.org/10.1063/1.524138

49. JONES, D. and MAUDE, A. D., 1965. Evidence for Wave Motions in the E-Region in the Ionosphere. Nature. vol. 206, no. 4980, pp. 177–179. DOI: https://doi.org/10.1038/206177b0

50. LOTOVA, N. A., 1988. Radio astronomical investigations of the solar wind stream structure. Itogi Nauki i Techniki, ser. Astronomiya. vol. 33, pp. 121–149. (in Russian).

51. OLYAK, M. R., 2013. The dispersion analysis of drift velocity in the study of solar wind flows. J. Atmos Sol.-Terr. Phys. vol. 102, pp. 185–191. DOI: https://doi.org/10.1016/j.jastp.2013.05.016

52. KALINICHENKO, N. N., OLYAK, M. R., KONOVALENKO, O. O., BUBNOV, I. N., YERIN, S. N., BRAZHENKO, A. I., IVANTISHIN, O. L. and LYTVYNENKO, O. A., 2017. Solar Wind Investigations by Observations of Interplanetary Scintillations of Cosmic Radio Sources at Decameter Wavelengths. Radio Phys. Radio Astron. vol. 22, no. 1, pp. 45–52. (in Ukrainian). DOI: https://doi.org/10.15407/rpra22.01.045

53. SHEPELEV, V. O., LITVINENKO, O. O., GEORGIEVA, K. and KIROV, B., 2020. Influence of the Solar Wind on Interferometric Observations at the Decameter Wavelengths. Radio Phys. Radio Astron. vol. 25, no. 2, pp. 87–99. (in Russian). DOI: https://doi.org/10.15407/rpra25.02.087

54. KUHAI, N. V. and KALINICHENKO, N. N., 2019. To the Question of Choosing the Model of Weak Interplanetary Scintillations of Cosmic Sources Radioemission in Range from 8 to 80 MHz. Radio Phys. Radio Astron. vol. 24, no. 2, pp. 117–128. (in Ukrainian). DOI: https://doi.org/10.15407/rpra24.02.117

 

 

Keywords


interplanetary scintillations; decameter wavelength range; solar wind; solar wind stream structure; coronal mass ejection

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)