INVOLVEMENT OF ALTIMETRY INFORMATION INTO THE IMPROVED PHOTOCLINOMETRY METHOD FOR RELIEF RETRIEVAL FROM A SLOPE FIELD
Abstract
Purpose: The paper discusses the possibility for increasing the planet’s surface relief retrieving accuracy with the improved photoclinometry method through the reference of the desired relief to the altimetry data. The general approach to solving the problem is proposed. The use of altimeters having both wide and narrow beam patterns are discussed, but the narrow beam pattern altimeter data is studied more in detail. The spatial resolution of the retrieved relief calculated with the improved photoclinometry method conforms to the one of the source images. Altimetry allows absolute reference to the surface heights and improves the accuracy of the relief determination.
Design/metodology/approach: The work is based on the improved photoclinometry method for the planet’s surface relief retrieving from images. This method is mathematically rigorous and uses the Bayesian statistical approach, that allows calculation of the most probable relief according to available observations.
Findings: An approach to determining the optimal statistical estimate of the surface heights from images in the frames of the improved photoclinometry method is proposed and an expression for the optimal filter which converts source images along with the wide beam pattern altimetry data into the most probable relief of the planet surface area is presented. The reference technique for the narrow beam pattern altimeter data is formulated. The efficiency of the method has been verified with the computer simulation. The relief of the surface area in Mare Imbrium on the Moon was retrieved using three images and laser altimeter data taken by the “Lunar Reconnaissance Orbiter” spacecraft.
Conclusions: Accounting for the narrow beam pattern altimeter data increases the accuracy of the relief determination. Using the narrow beam pattern altimeter data turns out to be more preferable over the involving wide beam pattern altimeter data. Computer simulation has shown that accounting for the narrow beam pattern altimeter data significantly increases the accuracy of the calculated heights as against using images exclusively and helps to speed up the calculation procedure.
Key words: planet surface relief; photometry; altimetry; optimal filtering; statistical estimation of random value
Manuscript submitted 26.11.2020
Radio phys. radio astron. 2021, 26(2): 173-188
REFERENCES
1. PETTENGILL, G. H., ELIASON, E., FORD, P. G., LORIOT, G. B., MASURSKY, H. and MCGILL, G. E., 1980. Pioneer Venus Radar Results: Altimetry and Surface Properties. J. Geophys. Res. Space Phys. vol. 85, is. A13, pp. 8261–8270. DOI: https://doi.org/10.1029/JA085iA13p08261
2. SMITH, D. E., ZUBER, M. T., NEUMANN, G. A. and LEMOINE, F. G., 1997. Topography of the Moon from the Clementine Lidar. J. Geophys. Res. Planet. vol. 102, is. E1, pp. 1591–1611. DOI: https://doi.org/10.1029/96JE02940
3. THOMAS, N., HUSSMANN, H., SPOHN, T., LARA, L. M., CHRISTENSEN, U., AFFOLTER, M., BANDY, T., BECK, T., CHAKRABORTY, S., GEISSBUEHLER, U., GERBER, M., GHOSE, K., GOUMAN, J., HOSSEINIARAN,I S., KUSKE, K., PETEUT, A., PIAZZA, D., RIEDER, M., SERVONET, A., ALTHAUS, C., BEHNKE, T., GWINNER, K., HÜTTIG, C., KALLENBACH, R., LICHOPOJ, A., LINGENAUBER, K., LÖTZKE, H.-G., LÜDICKE, F., MICHAELIS, H., OBERST, J., SCHRÖDTER, R., STARK, A., STEINBRÜGGE, G., DEL TOGNO, S., WICKHUSEN, K., CASTRO, J. M., HERRANZ, M., RODRIGO, J., PERPLIES, H., WEIGEL, T., SCHULZE-WALEWSKI, S., BLUM, S., CASCIELLO, A., RUGI-GROND, E., COPPOOLSE, W., RECH, M., WEIDLICH, K., LEIKERT, T., HENKELMANN, R., TREFZGER, B. and METZ, B., 2021. The BepiColombo Laser Altimeter. Space Sci. Rev. vol. 217, is. 1, id. 25. DOI: https://doi.org/10.1007/s11214-021-00794-y
4. SMITH, D. E., ZUBER, M. T., NEUMANN, G. A., MAZARICO, E., LEMOINE, F. G., HEAD, J. W., LUCEY, P. G., AHARONSON, O., ROBINSON, M. S., SUN, X., TORRENCE, M. H., BARKER, M. K., OBERST, J., DUXBURY, T. C., MAO, D., BARNOUIN, O. S., JHA, K., ROWLANDS, D. D., GOOSSENS, S., BAKER, D., BAUER, S., GLÄSER, P., LEMELIN, M., ROSENBURG, M., SORI, M, M., WHITTEN, J and MCCLANAHAN, T., 2017. Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit. Icarus. vol. 283, pp. 70–91. DOI: https://doi.org/10.1016/j.icarus.2016.06.006
5. PARUSIMOV, V. G. and KORNIENKO, Y. V., 1973. On determination of the most probable relief of a surface region by its optical image. Astrometriya i astrofizika. no. 19, pp. 20‑24. (in Russian).
6. KORNIENKO, Y. V., DULOVA, I. A. and NGUYEN XUAN ANH, 1994. Wiener Approach to the Determination of Optical Characteristics of a Planetary Surface from Photometric Observations. Kinematika i fizika nebesnyh tel. vol. 10, no. 5, pp. 69‑76. (in Russian).
7. KORNIENKO, Y. V. and NGUYEN XUAN ANH, 1996. Determination of relief and radiooptical parameters of a surface area through the use of a synthetic aperture radar. Radiofizika i elektronika. no. 1, pp. 129‑133. (in Russian).
8. DULOVA, I. A., SKURATOVSKY, S. I., BONDARENKO, N. V. and KORNIENKO, Y. V., 2008. Reconstruction of the Surface Topography from Single Images with the Photometric Method. Sol. Syst. Res.. vol. 42, is. 6, pp. 522‑535. DOI: https://doi.org/10.1134/S0038094608060051
9. BONDARENKO, N. V., DULOVA, I. A. and KORNIENKO, Y. V., 2014. Topography of polygonal structures at the Phoenix landing site on mars through the relief retrieval from the HiRISE images with the improved photoclinometry method. Sol. Syst. Res. vol. 48, is. 4. pp. 243–258. DOI: https://doi.org/10.1134/S0038094614040030
10. VAN DIGGELEN, J., 1951. A photometric investigation of the slopes and the heights of the ranges of hills in the Maria of the Moon. Bull. Astron. Inst. Netherlands. vol. 11, pp. 283–289.
11. AKIMOV, L. A. and KORNIENKO, Y. V., 1994. Light Scattering by the Lunar Surface. Kinematika i fizika nebesnyh tel. vol. 10, no. 2, pp. 14–21. (in Russian).
12. KOCHIN, N. E., 1965. Vector calculus and beginnings of tensor calculus. Moscow, Russia: Nauka Publ. (in Russian).
13. WILDEY, R. L., 1990. Radarclinometry of the earth and Venus from Space-Shuttle and Venera-15 imagery. Earth Moon Planet. vol. 48, pp. 197–231. DOI: https://doi.org/10.1007/BF00113857
14. WATTERS, T. R. and ROBINSON, M. S., 1997. Radar and photoclinometric studies of wrinkle ridges on Mars. J. Geophys. Res. vol. 102, is. E5. pp. 10889–10903. DOI: https://doi.org/10.1029/97JE00411
15. KIRK, R L., BARRETT, J. M. and SODERBLOM, L. A., 2003. Photoclinometry made simple? ISPRS Working Group IV/9 “Advances in planetary mapping”. Workshop. Houston, TX.
16. LOHSE, V., HEIPKE, C. and KIRK, R. L. 2006. Derivation of planetary topography using multi-image shape-from-shading. Planet. Space Sci. vol. 54, is. 7, pp. 661–674. DOI: https://doi.org/10.1016/j.pss.2006.03.002
17. GRUMPE, A. M. and WÖHLER, C., 2011. DEM construction and calibration of hyperspectral image data using pairs of radiance images. In: 2011 7th International Symposium on Image and Signal Processing and Analysis. pp. 609–614.
18. GASKELL, R. W., BARNOUIN-JHA, O. S., SCHEERES, D. J., KONOPLIV, A. S., MUKAI, T., ABE, S., SAITO, J., ISHIGURO, M., KUBOTA, T., HASHIMOTO, T., KAWAGUCHI, J., YOSHIKAWA, M., SHIRAKAWA, K., KOMINATO, T., HIRATA, N. and DEMURA, H., 2008. Characterizing and navigating small bodies with imaging data. Meteorit. Planet. Sci. vol. 43, is. 6, pp. 1049–1061. DOI: https://doi.org/10.1111/j.1945-5100.2008.tb00692.x
19. RAYMOND, C. A., JAUMANN, R., NATHUES, A., SIERKS, H., ROATSCH, T., PREUSKER, F., SCHOLTEN, F., GASKELL, R. W., JORDA, L., KELLER, H.-U., ZUBER, M. T., SMITH, D. E., MASTRODEMOS, N. and MOTTOLA, S., 2011. The Dawn Topography Investigation. Space Sci. Rev. vol. 163, pp. 487–510. DOI: https://doi.org/10.1007/s11214-011-9863-z
20. GROUSSIN, O., JORDA, L., AUGER, A.-T., KÜHRT, E., GASKELL, R., CAPANNA, C., SCHOLTEN, F., PREUSKER, F., LAMY, P., HVIID, S., KNOLLENBERG, J., KELLER, U., HUETTIG, C., SIERKS, H., BARBIERI, C., RODRIGO, R., KOSCHNY, D., RICKMAN, H., A’HEARN, M. F., AGARWAL, J., BARUCCI, M. A., BERTAUX, J.-L., BERTINI, I., BOUDREAULT, S., CREMONESE, G., DA DEPPO, V., DAVIDSSON, B., DEBEI, S., DE CECCO, M., EL-MAARRY, M. R., FORNASIER, S., FULLE, M., GUTIÉRREZ, P. J., GÜTTLER, C., IP, W.-H, KRAMM, J.-R., KÜPPERS, M., LAZZARIN, M., LARA, L. M., LOPEZ MORENO, J. J., MARCHI, S., MARZARI, F., MASSIRONI, M., MICHALIK, H., NALETTO, G., OKLAY, N., POMMEROL, A., PAJOLA, M., THOMAS, N., TOTH, I., TUBIANA, C. and VINCENT, J.-B., 2015. Gravitational slopes, geomorphology, and material strengths of the nucleus of comet 67P/Churyumov-Gerasimenko from OSIRIS observations. Astron. Astrophys. vol. 583, id. A32. DOI: https://doi.org/10.1051/0004-6361/201526379
21. JORDA, L., GASKELL, R., CAPANNA, C., HVIID, S., LAMY, P., ĎURECH,J., FAURY, G., GROUSSIN, O., GUTIÉRREZ, P., JACKMAN, C., KEIHM, S. J., KELLER, H. U., KNOLLENBERG, J., KÜHRT, E., MARCHI, S., MOTTOLA, S., PALMER, E., SCHLOERB, F. P., SIERKS, H., VINCENT, J.-B., A’HEARN, M. F., BARBIERI, C., RODRIGO, R., KOSCHNY, D., RICKMAN, H., BARUCCI, M. A., BERTAUX, J. L., BERTINI, I., CREMONESE, G., DA DEPPO, V., DAVIDSSON, B., DEBEI, S., DE CECCO, M., FORNASIER, S., FULLE, M., GÜTTLER, C., IP, W.-H., KRAMM, J. R., KÜPPERS, M., LARA, L. M., LAZZARIN, M., LOPEZ MORENO, J. J., MARZARI, F., NALETTO, G., OKLAY, N., THOMAS, N., TUBIANA, C. and WENZEL, K.-P., 2016. The global shape, density and rotation of Comet 67P/Churyumov-Gerasimenko from preperihelion Rosetta/OSIRIS observations. Icarus. vol. 277, pp. 257–278. DOI: https://doi.org/10.1016/j.icarus.2016.05.002
22. VELIKODSKY, Y. I., KOROKHIN, V. V., SHKURATOV, Y. G., KAYDASH, V. G. and VIDEEN, G., 2016. Opposition effect of the Moon from LROC WAC data. Icarus. vol. 275, pp. 1–15. DOI: https://doi.org/10.1016/j.icarus.2016.04.005
23. KOROKHIN, V., VELIKODSKY, Y., SHKURATOV, Y., KAYDASH, V., MALL, U., and VIDEEN, G., 2018. Using LROC WAC data for lunar surface photoclinometry. Planet. Space Sci. vol. 160, pp. 120–135. DOI: https://doi.org/10.1016/j.pss.2018.05.020
24. VELICHKO, S., KOROKHIN, V., VELIKODSKY, Y, KAYDASH, V., SHKURATOV, Y. and VIDEEN, G., 2020. Removal of topographic effects from LROC NAC images as applied to the inner flank of the crater Hertzsprung S. Planet. Space Sci. vol. 193, id. 105090. DOI: https://doi.org/10.1016/j.pss.2020.105090
25. DULOVA, I. A., BONDARENKO, N. V. and KORNIENKO, Y. V., 2010. Involvement of altimetric information into planet surface relief reconstruction from a set of images. In: The 8th International Kharkov Symposium of Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves and Workshop of Terahertz Technologies (MSMW’08 and TERATECH’08) Proceedings. Kharkov, Ukraine. vol. 2, pp. 766–768. DOI: https://doi.org/10.1109/MSMW.2010.5546107
26. BAYES, T., 1763. An essay towards solving a problem in the doctrine of chances. Philos. Trans. R. Soc. Lond. vol. 53, pp. 360–418.
27. LAPLACE, P. S., 1891. Memoire sur la probabilité des causes par les événements. Oeuvres Complètes. vol. 8. Paris: Gauthier-villars, pp. 27–65.
28. GAUSS, J. C. F., 1957. The theory of motion of celestial bodies revolving around the Sun along conical sections (1809). In: S. G. SUDAROV, ed. Selected geodesic works. Vol. 1. Moscow, Russia: Izdatelstvo geodezicheskoi literatury. (in Russian).
29. LEGENDRE, A. M., 1820. Nouvelles methodes pour la determination des orbites des cometes. Second supplement. Paris. pp. 79–80.
30. WALD, A. 1967. Statistical decision Functions. In: Positional games. Moscow, Russia: Nauka Publ., pp. 300–522. (in Russian).
31. DE GROOT, M. H., 1970. Optimal statistical decisions. New York: McGRAW-Hill company.
32. KORNIENKO, Y. V., 2005. Statistical Approach for Filtering and Image Informativity. Radiofizika i Elektronika. vol. 10, special issue, pp. 652-676. (in Russian).
33. KORNIENKO, Y. V. and DULOVA, I. A., 2019. Optimal surface relief reconstruction from both the photometric and the altimetric data. Radiophys. Electron. vol. 24, no. 4, pp. 46–52. (in Russian). DOI: https://doi.org/10.15407/rej2019.04.046
34. KORNIENKO, Y. V., 2008. Image Processing at the IRE NAS of Ukraine. Radiofizika i elektronika. vol. 3, special issue, pp. 423–45. (in Russian).
35. SER WMS SYSTEM, 2020. SER WMS System [online]. [viewed 15 November 2020]. Available from: http://wms.lroc.asu.edu
36. ROBINSON, M. S.; BRYLOW, S. M.; TSCHIMMEL, M., HUMM, D., LAWRENCE, S. J., THOMAS, P. C., DENEVI, B. W., BOWMAN-CISNEROS, E., ZERR, J., RAVINE, M. A., CAPLINGER, M. A., GHAEMI, F. T., SCHAFFNER, J. A., MALIN, M. C., MAHANTI, P., BARTELS, A., ANDERSON, J., TRAN, T. N., ELIASON, E. M., MCEWEN, A. S., TURTLE, E., JOLLIFF, B. L. and HIESINGER, H., 2010. Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview. Space Sci. Rev. vol. 150, is.1-4, pp. 81–124. DOI: https://doi.org/10.1007/s11214-010-9634-2
37. SMITH, D. E., ZUBER, M. T., NEUMANN, G. A., LEMOINE, F. G., MAZARICO, E., TORRENCE, M. H., MCGARRY, J. F., ROWLANDS, D. D., HEAD, J. W. III, DUXBURY, T. H., AHARONSON, O., LUCEY, P. G., ROBINSON, M. S., BARNOUIN, O. S., CAVANAUGH, J. F., SUN, X., LIIVA, P., MAO, D.-D., SMITH, J. C. and BARTELS, A. E., 2010. Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophys. Res. Lett. vol. 37, is 18, id. L18204. DOI: https://doi.org/10.1029/2010GL043751
Keywords
Full Text:
PDFCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)