SPORADIC RADIO EMISSION OF SPACE OBJECTS AT LOW-FREQUENCIES

DOI: https://doi.org/10.15407/rpra26.02.099

V. V. Zakharenko, V. B. Ryabov, I. P. Kravtsov, K. Yu. Mylostna, V. Yu. Kharlanova, I. Y. Vasylieva, O. M. Ulyanov, O. O. Konovalenko, M. M. Kalinichenko, P. Zarka, H. O. Rucker, G. Fischer, S. M. Yerin, J.-M. Grießmeier, M. A. Sydorchuk, A. I. Shevtsova, A. O. Skoryk, V. A. Shevchenko

Abstract


Purpose: The results of studies of sporadic radio emission of several types of space radio sources, including neutron stars and planets of the Solar System, are presented. The aim of this work is to review the latest achievements in the study of low-frequency radio emission of the Solar System planets and transient signals similar to pulsar pulses using the UTR-2 radio telescope. The importance of the development of the verification methods of the spaceborne radio emission in the study of sporadic signals from various sources is shown.

Design/methodology/approach: The studies of sporadic signals of different nature are based on the common set of procedures for cleaning records from the terrestrial radio frequency interference (RFI) in the frequency-time pattern using the information on the nature of the particular type of sporadic radio emission, possible types of interference and signal distortion. Characteristic features of sporadic radio emission of different sources are given, and for each of them the optimal method of signal extraction is developed. The efficiency of the developed procedures for cleaning from noise using adjustable parameters is shown. This is done on the basis of observations of diverse types of space radio sources, such as lightnings in the atmospheres of planets, single pulses of neutron stars and sporadic radio emission of Jupiter.

Findings: The developed methods of signal extraction detection in the presence of radio-interference have allowed obtaining the unique results such as: the distribution of the total intensity of single pulses of neutron stars depending on the galactic latitude; the automatic search of lightnings in the Saturn’s atmosphere in data due to the carefully elaborated RFI mitigation procedures, which made it possible to obtain the Saturn electrostatic discharge (SED) emission parameters based on the most complete set of events. Increased efficiency of the selection of Jupiter’s S-radiation signals despite the data corruption by the presence of radio-interference, which was reached due to the carefully chosen parameters of data cleaning procedures, have allowed us to detect short and intensive bursts, being the most informative for determining the physical parameters of radio emission in the area of their generation.

Conclusions: The large effective area and high sensitivity of the UTR-2 radio telescope allow making the sporadic radio emission study with high temporal and frequency resolutions. Due to these factors we can apply a wide range of methods of space signals’ detection in the presence of terrestrial radio-frequency interference of natural and artificial origin. The data cleaning parameters allow accounting for the characteristic features of space signals and to obtain important and even unique scientific results.

Key words: decameter wavelength range; UTR-2; sporadic radio emission; transients; lightning in the atmospheres of planets; Jupiter S-bursts

Manuscript submitted 21.05.2021

Radio phys. radio astron. 2021, 26(2): 099-129

REFERENCES

1. MCLAUGHLIN, M. A., LYNE, A. G., LORIMER, D. R., KRAMER, M., FAULKNER, A. J., MANCHESTER, R. N., CORDES, J. M., CAMILO, F., POSSENTI, A., STAIRS, I. H., HOBBS, G., D’AMICO, N., BURGAY, M. and O’BRIEN, J. T., 2006. Transient radio bursts from rotating neutron stars. Nature. vol. 439, is. 7078, pp. 817–820. DOI: https://doi.org/10.1038/nature04440

2. BURKE, B. F. and FRANKLIN, K. L., 1955. Observations of a variable radio source associated with the planet Jupiter. J. Geophys. Res. vol. 60, is. 2, pp. 213–217. DOI: https://doi.org/10.1029/JZ060i002p00213

3. KAISER, M. L., DESCH, M. D., WARWICK, J. W. and PEARCE, J. B., 1980. Voyager Detection of Nonthermal Radio Emission from Saturn. Science. vol. 209, is. 4462, pp. 1238–1240. DOI: https://doi.org/10.1126/science.209.4462.1238

4. KONOVALENKO, O. O., ZAKHARENKO, V. V., LYTVYNENKO, L. M., ULYANOV, O. M., SIDORCHUK, M. A., STEPKIN, S. V., SHEPELEV, V. A., ZARKA, P., RUCKER, H. O., LECACHEUX, A., PANCHENKO, M., BRUCK, YU. M., TOKARSKY, P. L., BUBNOV, I. M., YERIN, S. M., KOLIADIN, V. L., MELNIK, V. M., KALINICHENKO, M. M., STANISLAVSKY, O. O., DOROVSKYY, V. V., KHRISTENKO, O. D., SHEVCHENKO, V. V., BELOV, O. S., GRIDIN, A. O., ANTONOV, O. V., BOVKUN, V. P., REZNICHENKO, O. M., BORTSOV, V. M., KVASOV, G. V., OSTAPCHENKO, L. M., SHEVCHUK, M. V., SHEVCHENKO, V. A., YATSKIV, YA. S., VAVILOVA, I. B., BRAUDE, I. S., SHKURATOV, Y. G., RYABOV, V. B., PIDGORNY, G. I., TYMOSHEVSKY, A. G., LYTVYNENKO, O. O., GALANIN, V. V., RYABOV, M. I., BRAZHENKO, A. I., VASHCHISHIN, R. V., FRANTSUZENKO, A. V., KOSHOVYY, V. V., IVANTYSHYN, O. L., LOZINSKY, A. B., KHARCHENKO, B. S., VASYLIEVA, I. Y., KRAVTSOV, I. P., VASYLKIVSKY, Y. V., LITVINENKO, G. V., MUKHA, D. V., VASYLENKO, N. V., SHEVTSOVA, A. I., MIROSHNICHENKO, A. P., KUHAI, N. V., SOBOLEV, YA. M., and TSVYK, N. O., 2021. The founder of the decameter radio astronomy in Ukraine academician of NAS of Ukraine Semen Yakovych Braude is 110 years old: history of creation and development of the national experimental base for the last half century. Radio Phys. Radio Astron. vol. 26, no. 1, pp. 5–73. (in Ukrainian). DOI: https://doi.org/10.15407/rpra26.01.005

5. KONOVALENKO, A., SODIN, L., ZAKHARENKO, V., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., TOKARSKY, P., MELNIK, V., KALINICHENKO, N., STANISLAVSKY, A., KOLIADIN, V., SHEPELEV, V., DOROVSKYY, V., RYABOV, V., KOVAL, A., BUBNOV, I., YERIN, S., GRIDIN, A., KULISHENKO, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., REZNIK, A., KVASOV, G., MUKHA, D., LITVINENKO, G., KHRISTENKO, A., SHEVCHENKO, V. V., SHEVCHENKO, V. A., BELOV, A., RUDAVIN, E., VASYLIEVA, I., MIROSHNICHENKO, A., VASILENKO, N., OLYAK, M., MYLOSTNA, K., SKORYK, A., SHEVTSOVA, A., PLAKHOV, M., KRAVTSOV, I., VOLVACH, Y., LYTVINENKO, O., SHEVCHUK, N., ZHOUK, I., BOVKUN, V., ANTONOV, A., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHIN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A., GRIEßMEIER, J.-M., TAGGER, M., GIRARD, J., CHARRIER, D., BRIAND, C. and MANN, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron. vol. 42, is. 1, pp. 11–48. DOI: https://doi.org/10.1007/s10686-016-9498-x

6. MYLOSTNA, K. Y., ZAKHARENKO, V. V., KONOVALENKO, A. A., FISCHER, G., ZARKA, P. and SIDORCHUK, M. A., 2014. Fine time structure of lightnings on Saturn. Radio Phys. Radio Astron. vol.19, no. 1, pp.10–19. (in Russian). DOI: https://doi.org/10.15407/rpra19.01.010

7. ZAKHARENKO, V. V., 2011. Sporadic Radiation of Radio Astronomy Sources and its Study at Decameter Wavelengths. Radio Phys. Radio Astron. vol. 16, no. 2, pp. 121–134. (in Russian). DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i4.10 

8. WARWICK, J. W., PARCE, J. B., EVANS, D. R.CARR, T. D., SCHAUBLE, J. J., ALEXANDER, J. K., KAISER, M. L., DESCH, M. D., PEDERSEN, M., LECACHEUX, A., DAIGNE, G., BOISCHOT, A. and BAROW, C. H., 1981. Planetary Radio Astronomy Observations from Voyager 1 Near Saturn. Sience. vol. 212, is. 4491, pp. 239–243. DOI: https://doi.org/10.1126/science.212.4491.239

9. KONOVALENKO, A. A., KALINICHENKO, N. N., RUCKER, H. O., LECACHEUX, A., FISCHER, G., ZARKA, P., ZAKHARENKO, V. V., MYLOSTNA, K. Y., GRIEßMEIER, J.-M., ABRANIN, E. P., FALKOVICH, I. S., SIDORCHUK, K. M., KURTH, W. S., KAISER, M. L. and GURNETT, D. A., 2013. Earliest recorded ground-based decameter wavelength observations of Saturn’s lightning during the giant E-storm detected by Cassini spacecraft in early 2006. Icarus. vol. 224, is. 1, pp. 14–23. DOI: https://doi.org/10.1016/j.icarus.2012.07.024

10. ZAKHARENKO, V., MYLOSTNA, C., KONOVALENKO, A., ZARKA, P., FISCHER, G., GRIEßMEIER, M., LITVINENKO, G., RUCKER, H., SIDORCHUK, M., RYABOV, B., VAVRIV, D., RYABOV, V., CECCONI, B., COFFRE, A., DENIS, L., FABRICE, C., PALLIER, L., SCHNEIDER, J., KOZHYN, R., VINOGRADOV, V., MUKHA, D., WEBER, R., SHEVCHENKO, V. and NIKOLAENKO, V., 2012. Ground-based and spacecraft observations of lightning activity on Saturn. Planet. Space Sci. vol. 61, is. 1, pp. 53–59. DOI: https://doi.org/10.1016/j.pss.2011.07.021

11. RYABOV, V. B., VAVRIV, D. M., ZARKA, P., RYABOV, B. P., KOZHIN, R., VINOGRADOV, V. V. and DENIS, L., 2010. A low-noise, high dynamic-range, digital receiver for radio astronomy applications: an efficient solution for observing radio-bursts from Jupiter, the Sun, pulsars, and other astrophysical plasmas below 30 MHz. Astron. Astrophys. vol. 510. id. A16. pp. 1–13. DOI:https://doi.org/10.1051/0004-6361/200913335

12. ZAKHARENKO, V. V., NIKOLAENKO V. S., ULYANOV, O. M. and MOTIYENKO, R. A., 2007. A High Time Resolution Receiver for Radio Emission Investigation. Radio Phys. Radio Astron. vol. 12, no. 3, pp. 233–241. (in Russian).

13. MYLOSTNA, K., ZAKHARENKO, V., KONOVALENKO, A., KOLYADIN, V., ZARKA, P., GRIEßMEIER, J.-M., LITVINENKO, G., SIDORCHUK, M., RUCKER, H., FISCHER, G., CECCONI, B., COFFRE, A., DENIS, L., NIKOLAENKO, V. and SHEVCHENKO, V., 2013. Study of Saturn electrostatic discharges in a wide range of time scales. Odessa Astronomical Publications. vol. 26, is. 2, pp. 251–253.

14. MYLOSTNA, K. Y. and ZAKHARENKO, V. V., 2013. Search and Study of Storm Activity on Saturn and Other Planets of the Solar System. Radio Phys. Radio Astron. vol. 18, no. 1, pp. 12–25. (in Russian).

15. FISCHER, G., KURTH, W. S., GURNETT, D. A., ZARKA, P., DYUDINA, U. A., INGERSOLL, A. P., EWALD, S. P., PORCO, C. C., WESLEY, A., GO, C. and DELCROIX, M., 2011. A giant thunderstorm on Saturn. Nature. vol. 475, pp. 75–77. DOI: https://doi.org/10.1038/nature10205

16. ZAKHARENKO, V., MYLOSTNA, K., KONOVALENKO, A., KOLYADIN, V., ZARKA, P., GRIEßMEIER, J.-M., LITVINENKO, G., SIDORCHUK, M., RUCKER, H., FISCHER, G., CECCONI, B., COFFRE, A., DENIS, L., SHEVCHENKO, V. and NIKOLAENKO, V., 2013. Study of Saturn electrostatic discharges with high time resolution. In: European Planetary Sciences Congress Abstracts. London, 08–13 September 2013. vol. 8, id. EPSC2013-130

17. RYABOV, B. P., and GERASIMOVA, N. N., 1990. Sporadic Radio Emission of Jupiter at Decameter. Kyiv, Ukraine: Naukova Dumka. (in Russian).

18. RYABOV, B. P., 1986. Decametric radio emission of Jupiter. II. Localization of the S-component radiation region. Astronomichrskii Vestnik. vol. 20, no. 1, pp. 20–34. (in Russian).

19. RYABOV, B. P., 1990. Directional pattern of the S-component of the decameter radio emission of Jupiter. Astronomichrskii Vestnik. vol. 24, no. 3, pp. 221–231. (in Russian).

20. RYABOV, B. P. and SHEVCHENKO, V. A., 1982. Hardware complex for studying decameter radiation of Jupiter on the UTR-2 radio telescope. Radio astronomy equipmentantennas, and techniques. Yerevan, Armenia: Izd-vo AN ArmSSR, pp. 178–179.

21. RYABOV, B. P., ARKHIPOV, A. V. and SHEVCHENKO, V. A., 1985. Decametric radio emission of Jupiter. I. The morphology of S-burst storms. Astronomichrskii Vestnik. vol. 19, no. 4, pp. 296–318. (in Russian).

22. RYABOV, B. P., 1990. Decametric radio emission of Jupiter. III: Some physical characteristics of S-component sources. Astronomicheskii Vestnik. vol. 24, no. 2, pp. 103–118. (in Russian).

23. RYABOV, B. P., 1988. Decameter radio emission from Jupiter. IV. S-radiation pattern structure. Astronomicheskii Vestnik. vol. 22, no. 2. pp. 21–29. (in Russian).

24. RYABOV, B. P., 1994. Jovian S emission: Model of radiation source. J. Geophys. Res. Planet. vol. 99, is. E4, pp. 8441–8449. DOI:https://doi.org/10.1029/93JE02525

25. RYABOV, B. P., 1992. Jovian S-emission: Decametric high sensitivity observations and model of radiation source. In: H. O. RUCKER, S. J. BAUER, and M. L. KAISER, eds. Planetary Radio Emissions III, 3rd International Workshop Proceedings. September 2-4, 1991. Vienna, Austria: Austrian Academy of Sciences Press, pp. 125–144.

26. RYABOV, B. P., 2001. Jovian Decametric Emission. Multiscale Dynamic Spectra. Radio Phys. Radio Astron. vol. 6, no. 1, pp. 103–130. (in Russian).

27. RYABOV, B. P., ZARKA, P., RUCKER H. O., RYABOV, V. B. and BOUDJADA, M. Y., 1997. Recurrent fine structures in Jovian S-burst emission. In: H. O. RUCKER, S. J. BAUER, and A. LECACHEAUX, eds. Planetary Radio Emission IV, 4rd International Workshop Proceedings. September 9-11, 1996. Vienna, Austria: Austrian Academy of Sciences Press. pp. 65–89.

28. RYABOV, B. P., ZARKA, P., RUCKER, H. O., RYABOV, V. B. and BOUDJADA, M. Y., 1997. Jovian Decametric Emission: Regular Variabilities and Scale Invariants in S-Burst Dynamic Spectra. Radio Phys. Radio Astron. vol. 2, no. 4, pp. 402–418.

29. LITVINENKO, G. V., LECACHEUX, A., RUCKER, H. O., KONOVALENKO, O. O., RYABOV, B. P., VYNOGRADOV, V. V., SHAPOSHNIKOV, V. E. and TAUBENSCHUSS, U., 2006. Modulation Effects on Dynamic Spectra of Sporadic Jovian Decameter Emission. Radio Phys. Radio Astron. vol. 11, no. 2, pp. 325–347. (in Russian).

30. LITVINENKO, G. V., RUCKER, H. O., VINOGRADOV, V. V., LEITNER, M. and SHAPOSHNIKOV, V. E., 2004. Internal structure of the Jovian simple S-burst obtained with the wavelet analysis technique. Astron. Astrophys. vol. 426, pp. 343–351. DOI: https://doi.org/10.1051/0004-6361:200400018

31. RYABOV, V. B., RYABOV, B. P., VAVRIV, D. M., ZARKA, P., KOZHIN, R., VINOGRADOV, V. V. and SHEVCHENKO, V. A., 2007. Jupiter S-bursts: Narrow-band origin of microsecond subpulses. J. Geophys. ResSpace Phys. vol. 112, is. A9, id. A09206. DOI: https://doi.org/10.1029/2007JA012607

32. ZAKHARENKO, V., KONOVALENKO, A., ZARKA, P.,ULYANOV, O., SIDORCHUK, M., STEPKIN, S., KOLIADIN, V., KALINICHENKO, N., STANISLAVSKY, A., DOROVSKYY, V., SHEPELEV, V., BUBNOV, I., YERIN, S., MELNIK, V., KOVAL, A., SHEVCHUK, N., VASYLIEVA, I., MYLOSTNA, K., SHEVTSOVA, A., SKORYK, A., KRAVTSOV, I., VOLVACH, Y., PLAKHOV, M., VASILENKO, N., VASYLKIVSKYI, Y., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., RYABOV, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., KVASOV, G., MUKHA, D., LITVINENKO, G., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHYN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A. and GRIEßMEIER, J.-M., 2016. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum. vol. 5, is. 4, id. 1641010. DOI: https://doi.org/10.1142/S2251171716410105

33. ULYANOV, O. M., ZAKHARENKO, V. V., KONOVALENKO, O. O., LECACHEUX, A., ROSOLEN, C. and RUCKER, H. O., 2006. Detection of Individual Pulses from Pulsars B0809+74; B0834+06; B0943+10; B0950+08 and B1133+16 in the Decameter Wavelengths. Radio Phys. Radio Astron. vol. 11, no. 2, pp. 113–133. (in Russian).

34. ULYANOV, O. M., DESHPANDE, A., ZAKHARENKO, V. V., ASGEKAR, A. and SHANKAR, U., 2007. Two-Frequency Observations of Six Pulsars Using UTR-2 and GEETEE Radio Telescopes. Radio Phys. Radio Astron. vol. 12, no. 1, pp. 5–20. (in Russian).

35. UL’YANOV, O. M. and ZAKHARENKO, V. V., 2012. Energy of anomalously intense pulsar pulses at decameter wavelengths. Astron. Rep. vol. 56, is. 6. pp. 417–429. DOI: https://doi.org/10.1134/S1063772912060054

36. ABRANIN, E. P., BRUCK, YU. M., ZAKHARENKO, V. V. and KONOVALENKO, A. A., 1997. Structure and Parameters of New System of Antenna Amplification of Radio Telescope UTR-2. Radio Phys. Radio Astron. vol. 2, no. 1, pp. 95–102. (in Russian).

37. ABRANIN, E. P., BRUCK, YU. M., ZAKHARENKO, V. V. and KONOVALENKO, A. A., 2001. The New Preamplification System for the UTR-2 Radio Telescope. Exp. Astron. vol. 11, is. 2, pp. 85–112. DOI: https://doi.org/10.1023/A:1011109128284

38. ZAKHARENKO, V. V., VASYLIEVA, I. Y., KONOVALENKO, A. A., ULYANOV, O. M., SERYLAK, M., ZARKA, P., GRIEßMEIER, J.-M., COGNARD, I. and NIKOLAENKO, V. S., 2013. Detection of decametre-wavelength pulsed radio emission of 40 known pulsars. Mon. Not. R. Astron. Soc. vol. 431, is. 4, pp. 3624–3641. DOI: https://doi.org/10.1093/mnras/stt470

39. ZAKHARENKO, V. V., MYLOSTNA, K. Y., FISCHER, G., KONOVALENKO, O. O., ZARKA, P., GRIEßMEIER, J.–M., RYABOV, B. P., VAVRIV, D. M., RYABOV, V. B., RUCKER, H. O., RAVIER, P., SIDORCHUK, M. A., CECCONI, B., COFFRE, A., DENIS, L., FABRICE, C., KOZHYN, R. V., MUKHA, D. V., PALLIER, L., SCHNEIDER, J., SHEVCHENKO, V. A., VYNOGRADOV, V. V., WEBER, R. and NIKOLAENKO, V. S., 2010. Identification of Saturn Lightnings Recorded by the UTR-2 Radio Telescope and Cassini Spacecraft. Radio Phys. Radio Astron. vol. 15, no. 4, pp. 361–368. (in Russian). DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i2.10

40. VASYLIEVA, I. Y., ZAKHARENKO, V. V., ZARKA, P., ULYANOV, O. M., SHEVTSOVA, A. I. and SEREDKINA, A. A., 2013. Data Processing Pipeline for Decameter Pulsar/Transient Survey. Odessa Astronomical Publications. vol. 26, is. 2, pp. 159–161. DOI: 10.18524/1810-4215.2013.26.82470

41. OFFRINGA, A. R., DE BRUYN, A. G., BIEHL, M., ZAROUBI, S., BERNARDI, G. and PANDEY, V. N., 2010. Post-correlation radio frequency interference classification methods. Mon. Not. R. Astron. Soc. vol. 405, is. 1, pp. 155–167. DOI: https://doi.org/10.1111/j.1365-2966.2010.16471.x

42. VASYLIEVA, I. Y. Pulsars and transients survey, and exoplanet search at low-frequencies with the UTR-2 radio telescope: methods and first results [online]. 2015. Phd Thesis ed. Observatoire de Paris [viewed 19 April 2021]. Available from: https://tel.archives-ouvertes.fr/tel-01246634

43. TKACHOV, V. M., ZAKHARENKO, V. V., VASYLIEVA, I. Y., TSARIN, YU. A., BANNIKOVA, E. YU., ILYUSHIN, V. V., SAVANEVYCH, V. E., GERASIMENKO, O. V., ANNENKOV, O. B., KULISHENKO, S. F. and KULISHENKO, D. F., 2013. Using grid-technologies for solving problems in radio physics and radio astronomy. Radio Phys. Radio Astron. vol. 18, no. 2, pp. 176–188. (in Russian).

44. KRAVTSOV, I. P., ZAKHARENKO, V. V., VASYLIEVA, I. Y., MYKHAILOVA, S. S., ULYANOV, O. M., SHEVTSOVA, A. I., SKORYK, A. O., ZARKA, P. and KONOVALENKO, O. O., 2016. Search for Transient Signals in the Data of Decameter Survey of Northern Sky. Adv. Astron. Space Phys. vol. 6, is. 2, pp. 79–84. DOI: https://doi.org/10.17721/2227-1481.6.79-84

45. VASYLIEVA, I. Y., ZAKHARENKO, V. V., KONOVALENKO, A. A., ZARKA, P., ULYANOV, O. M., SHEVTSOVA, A. I. and SKORYK, A. O., 2014. Decameter Pulsar/Transient Survey of Northern Sky. First Results. Radio Phys. Radio Astron. vol. 19, no. 3, pp. 197–205. DOI: https://doi.org/10.15407/rpra19.03.197

46. MYLOSTNA, K. Y., ZAKHARENKO, V. V., FISCHER, G., KONOVALENKO, A. A. and ZARKA, P., 2017. Study of SED’s emission parameters. In: G. FISCHER, M. PANCHENKO, and P. ZARKA, eds.  Planetary Radio Emissions VIII, 8th International Workshop Proceedings. October 25-27, 2016. Vienna, Austria: Austrian Academy of Sciences Press, pp. 223–231.

47. RYABOV, V. B., ZARKA, P., HESS, S., KONOVALENKO, A., LITVINENKO, G., ZAKHARENKO, V., SHEVCHENKO, V. A. and CECCONI, B., 2014. Fast and slow frequency-drifting millisecond bursts in Jovian decametric radio emissions. Astron. Astrophys. vol. 568, id. A53. DOI: https://doi.org/10.1051/0004-6361/201423927

48. KRAVTSOV, I. P., ZAKHARENKO, V. V., VASYLIEVA, I. Y., MYKHAILOVA, S. S., ULYANOV, O. M., SHEVTSOVA, A. I. and SKORYK, A. O., 2016. Parameters of the transient signals detected in the decameter survey of the Northern sky. Odessa Astronomical Publications. vol. 29, pp. 179–183. DOI: https://doi.org/10.18524/1810-4215.2016.29.85210

49. KRAVTSOV, I. P., ZAKHARENKO, V. V., VASYLIEVA, I. Y., ULYANOV, O. M., SHEVTSOVA, A. I., SKORYK, A. O. and MYKHAILOVA, S. S., 2016. Decameter Pulsars and Transients Survey of the Northern Sky. Observations and Data Processing. In: 9th International Kharkiv Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves MSMW’2016. Kharkiv, Ukraine. DOI: https://doi.org/10.1109/MSMW.2016.7538020

50. ZAKHARENKO, V. V., KRAVTSOV, I. P., VASYLIEVA, I. Y., KONOVALENKO, A. A., ULYANOV, O. M. and KOLYADIN, V. L., 2018. Search for Low-Intensity Interference and Distributions of Transient Signals’ Characteristics in the Data of Decameter Survey of Northern Sky. Radio Phys. Radio Astron. vol. 23, no. 2, pp. 79–93. (in Russian). DOI: https://doi.org/10.15407/rpra23.02.079

51. ZAKHARENKO, V. V., KRAVTSOV, I. P. and VASYLIEVA, I. Y., 2017. Decameter Pulsar/Transient Survey of Northen Sky. Parameters of Individual Pulses. Radio Phys. Radio Astron. vol. 22, no. 1, pp. 31–44. (in Russian). DOI: https://doi.org/10.15407/rpra22.01.031

52. KRAVTSOV, I. P., 2018. Survey of the Northern sky in order to find sporadic radio emission sources in decameter wave range. PhD thesis ed. Institute of Radio Astronomy of NAS of Ukraine, V. N. Karazin Kharkiv National University. (in Ukrainian).

53. KRAVTSOV, I. P., ZAKHARENKO, V. V., VASYLIEVA, I. Y., SHEVTSOVA, A. I., YERIN, S. M., ULYANOV, O. M., KONOVALENKO, O. O., VASYLKIVSKYI, Y. V. and MYASOYED, A. I., 2020. First detection at the decameter wavelengths and clarification of radiation parameters of PSR J2325-0530, PSR J0613+3731, and PSR J1426+52 radio pulsars. Radio PhysRadio Astron. vol. 25, no. 3, pp. 193–210. (in Ukrainian). DOI: https://doi.org/10.15407/rpra25.03.193

54. MANCHESTER, R. N., HOBBS, G. B., TEOH, A. and HOBBS, M., 2005. The Australia Telescope National Facility Pulsar Catalogue. Astron. J. vol. 129, is. 4, pp. 1993–2006. DOI: https://doi.org/10.1086/428488

55. CSIRO., 2020. ATNF Pulsar Catalogue. Australia Telescope National Facility. [online table]. [viewed 3 May 2021]. Available from: https://www.atnf.csiro.au/research/pulsar/psrcat/

56. HANKINS, T. H., KERN, J. S., WEATHERALL, J. C. and EILEK, J. A., 2003. Nanosecond radio bursts from strong plasma turbulence in the Crab pulsar. Nature. vol. 422, pp. 141–143. DOI: https://doi.org/10.1038/nature01477

57. HANKINS, T. H. and EILEK, J. A., 2007. Radio emission signatures in the Crab Pulsar. Astrophys. J. vol. 670, is. 1, pp. 693–701. DOI: https://doi.org/10.1086/522362

58. JOHNSTON, S. and ROMANI, R. W., 2003. Giant pulses from PSR B0540–69 in the Large Magellanic Cloud. Astrophys. J. vol. 590, is. 2, pp. L95–L98. DOI: https://doi.org/10.1086/376826

59. WEST VIRGIAN UNIVERSITY. 2016. The RRATalog [online]. Morgantown, USA: West Virgian University. [viewed 3 May 2021]. Available from: http://astro.phys.wvu.edu/rratalog/

60. KEANE, E. F. and KRAMER, M., 2008. On the birthrates of Galactic neutron stars. Mon. Not. R. Astron. Soc. vol. 391, is. 4, pp. 2009–2016. DOI: https://doi.org/10.1111/j.1365-2966.2008.14045.x

61. MALOFEEV, V. M., MALOV, O. I. and TEPLYKH, D. A., 2007. Radio emission from AXP and XDINS. Astrophys. Space. Sci. vol. 308, pp. 211–216 DOI: https://doi.org/10.1007/s10509-007-9341-y

62. VOGES, W., ASCHENBACH, B., BOLLER, TH., BRÄUNINGER, H., BRIEL, U., BURKERT, W., DENNERL, K., ENGLHAUSER, J., GRUBER, R., HABERL, F., HARTNER, G., HASINGER, G., KÜRSTER, M., PFEFFERMANN, E., PIETSCH, W., PREDEHL, P., ROSSO, C., SCHMITT, J. H. M. M., TRÜMPER, J. and ZIMMERMANN, H. U., 1999. The ROSAT all–sky survey bright source catalogue. Astron. Astrophys. vol. 349, pp. 389–405. DOI: https://doi.org/10.1017/S0074180900129237

63. KONDRATIEV, V. I., MCLAUGHLIN, M. A., LORIMER, D. R., BURGAY, M., POSSENTI, A., TUROLLA, R., POPOV, S. B. and ZANE, S., 2009. New limits on radio emission from X-ray dim isolated neutron stars. Astrophys. J. vol. 702, is. 1, pp. 692–706. DOI: https://doi.org/10.1088/0004-637X/702/1/692

64. HODOSÁN, G., HELLING, C. and RIMMER, P. B., 2017. Exo-lightning radio emission: the case study of HAT-P-11b. arXiv:1711.08053 [astro-ph.EP]. DOI: https://doi.org/10.1553/PRE8s345

65. KRAVTSOV, I., ZAKHARENKO, V., VASYLIEVA, I., ULYANOV, O., YERIN, S., VASYLKIVSKYI, Y. and KONOVALENKO, O., 2020. Detection of repetitive pulses from the sporadic decameter radio emission source. In: 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine,  pp. 800–804. DOI: https://doi.org/10.1109/UkrMW49653.2020.9252720

66. APLIN, K. L., FISCHER, G., NORDHEIM, T. A., KONOVALENKO, A., ZAKHARENKO, V. and ZARKA, P., 2020. Atmospheric Electricity at the Ice Giant. Space Sci. Rev. vol. 216, is. 2, id. 26. DOI: https://doi.org/10.1007/s11214-020-00647-0


Keywords


decameter wavelength range; UTR-2; sporadic radio emission; transients; lightning in the atmospheres of planets; Jupiter S-bursts

Full Text:

PDF


Creative Commons License

Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0) .