50 YEARS OF RESEARCH IN CONTINUUM AT THE UTR-2 RADIO TELESCOPE

DOI: https://doi.org/10.15407/rpra26.04.287

M. A. Sidorchuk, N. M. Vasilenko, O. M. Ulyanov, O. O. Konovalenko, D. V. Mukha, E. A. Abramenkov, K. M. Sidorchuk, A. I. Miasoied

Abstract


Purpose: The results of research in continuum decameter-wave radio emission of the Galaxy background, ionized hydrogen regions, supernova remnants, extragalactic discrete sources, extended galaxies, galactic clusters, extragalactic background are given. The aim of this work is reviewing the results achieved for over 50-years of the UTR-2 radiotelescope research of our Galaxy and its population, as well as extragalactic radio sources in the continuum radio emission spectrum at extremely low frequencies for the ground based observations.

Design/methodology/approach: The review, analysis, collection of archival data in various publications related to the subjectof this work.

Findings: The basic results of studying the ionized hydrogen regions, supernova remnants, Galaxy background emission and its large-scale structure are given, and the maps of these sources are obtained. The catalog of extragalactic discrete radio sources of the most Northern sky part and the cosmological conclusions based on its analysis are described; the estimate of the isotropic extragalactic background brightness temperature is obtained; for the first time, the observational results for the Andromeda galaxy and two galactic clusters Coma and A2255 are given briefly.

Conclusions: All the results presented here emphasize the uniqueness and importance of research in the decameter wavelength range, and the large area, flexibility of structure, continuous improvement make the UTR-2 radio telescope an indispensable tool for solving the most important tasks of modern radio astronomy, despite its respectable age. For example, only in the range of 10 to 30 MHz the ionized part of the most common element in the universe, the hydrogen, becomes optically thick and begins to absorb the synchrotron emission on the line of sight, which allows rather easy separation of thermal and non-thermal components of radioemission. This property allows to determine the ionized hydrogen regions’ electron temperature and the electron concentration on the line of sight independently in studying the hydrogen emission regions. When studying the supernova remnants, we can determine the ionized matter location by their spectrum drops ‒ before, inside or behind the remnant. Based on the HB3 supernova remnant radio imagies, an assumption was made on the existence of an ionized hydrogen relic shell aroundit, being caused by the initial ultraviolet flash of a supernova.

For the first time, the maps of the Northern sky large-scale structure in the declination range from ‒15° to +85° at extremely low frequencies 10, 12.6, 14.7, 16.7, 20 and 25 MHz for the ground-based observations are published, which, besides their own scientific value, may allow to correct the UTR-2 radio telescope imaging results. Using the full-resolution UTR-2 maps and the developed method of multifrequency T‒T diagrams, it was possible to separate the background radiation into galactic and extragalactic components and construct the spectrum of the latter.

From the analysis of the most complete decameter wavelength range catalog of discrete sources, it follows that there is a gap in the redshift spatial distribution for all classes of extragalactic sources.

The existence of an ionized hydrogen ring in the Andromeda Nebula disk has been suggested. It is shown that the main partof the galaxy clusters decameter-wave emission comes from haloes and relics.

Key words: decameter range; discrete sources; supernovaremnants; catalog; continuum radio emission; HII regions; UTR-2; background emission

Manuscript submitted 07.09.2021

Radio phys. radio astron. 2021, 26(4):287-313

REFERENCES

1. KONOVALENKO, O. O., ZAKHARENKO, V. V., LYTVYNENKO,L. M., ULYANOV, O. M., SIDORCHUK, M. A., STEPKIN, S. V., SHEPELEV, V. A., ZARKA, P., RUCKER, H. O., LECACHEUX, A., PANCHENKO, M., BRUCK, YU. M., TOKARSKY, P. L., BUBNOV, I. M., YERIN, S. M., KOLIADIN, V. L., MELNIK, V. M., KALINICHENKO, M. M., STANISLAVSKY, O. O., DOROVSKYY, V. V., KHRISTENKO, O. D., SHEVCHENKO,V. V., BELOV, O. S., GRIDIN, A. O., ANTONOV,O. V., BOVKUN, V. P., REZNICHENKO, O. M., BORTSOV, V. M., KVASOV, G. V., OSTAPCHENKO, L. M., SHEVCHUK, M. V., SHEVCHENKO, V. A.,YATSKIV, YA. S., VAVILOVA, I. B., BRAUDE, I. S.,SHKURATOV, Y. G., RYABOV, V. B., PIDGORNY, G. I., TYMOSHEVSKY, A. G., LYTVYNENKO, O. O., GALANIN, V. V., RYABOV, M. I., BRAZHENKO, A. I., VASHCHISHIN,R. V., FRANTSUZENKO, A. V., KOSHOVYY, V. V., IVANTYSHYN, O. L., LOZINSKY, A. B., KHARCHENKO, B. S., VASYLIEVA, I. Y., KRAVTSOV,I. P., VASYLKIVSKY, Y. V., LITVINENKO, G. V., MUKHA, D. V., VASYLENKO, N. M., SHEVTSOVA, A. I., MIROSHNICHENKO, A. P., KUHAI, N. V., SOBOLEV, YA. M. and TSVYK, N. O., 2021. The founder of the decameter radio astronomy in Ukraine academician of NAS of Ukraine Semen Yakovych Braude is 110 years old: historyof creation and development of the national experimental base for the last half century. Radio Phys. Radio Astron. vol. 26, no. 1, pp. 5–73. (in Ukrainian). DOI: https://doi.org/10.15407/rpra26.01.005

2. MELNIK, V. N., KONOVALENKO, A. A., DOROVSKYY, V. V., LECACHEUX, A., RUCKER, H. O. and SHEVCHUK, M. V., 2021. Exploration of the solar decameter radio emission with the UTR-2 radio telescope. Radio Phys. Radio Astron. vol. 26, no. 1, pp. 74–89. DOI: https://doi.org/10.15407/rpra26.01.074

3. ZAKHARENKO, V. V., RYABOV, V. B., KRAVTSOV, I. P., MYLOSTNA, K. YU., KHARLANOVA, V. YU., VASYLIEVA,I. Y., ULYANOV, O. M., KONOVALENKO, O. O.,KALINICHENKO, M. M., ZARKA, P., RUCKER, H. O.,FISCHER, G., YERIN, S. M., GRIEßMEIER, J.-M., SYDORCHUK,M. A., SHEVTSOVA, A. I., SKORYK, A. O.and SHEVCHENKO, V. A., 2021. Sporadic radio emission ofspace objects at low-frequencies. Radio Phys. Radio Astron. vol. 26, no. 2, pp. 99–129. (in Ukrainian). DOI: https://doi.org/10.15407/rpra26.02.099

4. ULYANOV, O. M., 2021. History of low-frequency researchof pulsars. Radio Phys. Radio Astron. vol. 26,no. 2, pp. 130–147. (in Ukrainian). DOI: https://doi.org/10.15407/rpra26.02.130

5. KALINICHENKO, M. M., KUHAI, N. V., KONOVALENKO,O. O., BRAZHENKO, A. I., BUBNOV, I. M.,YERIN, S. M., RUCKER, H. O., ZARKA, P., LECACHEUX, A., IVANTYSHYN, O. L., LYTVYNENKO, O. O., ROMANCHUK, O. I. and FRANTSUZENKO, A. V., 2021. Investigations of cosmic sources radio emission scintillations due to interplanetary plasma irregularities at the Institute of Radio Astronomy, NAS Ukraine. Radio Phys. Radio Astron.vol. 26, no. 2, pp. 148–164. (in Ukrainian). DOI: https://doi.org/10.15407/rpra26.02.148

6. MIROSHNICHENKO, A. P., 2021. Environment densityof a giant radio structure for galaxies and quasars with steep radio spectra. Radio Phys. Radio Astron. vol. 26,no. 2, pp. 165–172. (in Ukrainian). DOI: https://doi.org/10.15407/rpra26.02.165

7. KRYMKIN, V. V., 1971. The spectrum of low-frequency radio emission. Radiophys. Quantum Electron. vol. 14, is. 2,pp. 161–164. DOI: https://doi.org/10.1007/BF01031395

8. ANTONOV, A. V., 1973. Investigation of the cosmicbackground radio emission at a frequency of 10 MHz. Radiophys. Quantum Electron. vol. 16, is. 5, pp. 581–584.DOI: https://doi.org/10.1007/BF01033495

9. HAMILTON, P. A. and HAYNES, R. F., 1968. Observations of the Southern Sky at 10.02 MHz. Aust. J. Phys.vol. 21, is. 6, pp. 895–902. DOI: https://doi.org/10.1071/PH680895

10. ZHUK, I. N., 1973. Distribution of the radio brightnessof the galactic background in the decameter range of radio waves. Radiophys. Quantum Electron. vol. 16, is. 5, pp. 577–580. DOI: https://doi.org/10.1007/BF01033494

11. TURTLE, A. J., PUGH, J. F., KENDERDINE, S. and PAULINY-TOTH, I. I. K., 1962. The Spectrum of the Galactic Radio Emission: I. Observations of Low Resolving Power. Mon. Not. R. Astron. Soc. vol. 124, is. 4, pp. 297–312. DOI: https://doi.org/10.1093/mnras/124.4.297

12. BRIDLE, A. H. and BALDWIN, J. E., 1967. The Spectrumof the Radio Background Between 13 and 404 MHz. Mon. Not. R. Astron. Soc. vol. 136, is. 2, pp. 219–240. DOI: https://doi.org/10.1093/mnras/136.2.219

13. ELLIS, G. R. A., 1982. Galactic Radio Emission Below 16–5 MHz and the Galactic Emission Measure. Aust. J. Phys.vol. 35, is. 1, pp. 91–104. DOI: https://doi.org/10.1071/PH820091

14. MATHEWSON, D. S., BROTEN, N. W. and COLE, D. J., 1965. A survey of the Southern Sky at 30 Mc/s. Aust. J. Phys.vol. 18, is. 6, pp. 665–668. DOI: https://doi.org/10.1071/PH650665

15. CASWELL, J. L., 1976. A Map of the Northern Sky at 10 MHz. Mon. Not. R. Astron. Soc. vol. 177, is. 3,pp. 601–616. DOI: https://doi.org/10.1093/mnras/177.3.601

16. ROGER, R. S., COSTAIN, C. H., LANDECKER, T. L. and SWERDLYK, C. M., 1999. The radio emission from the Galaxy at 22 MHz. Astron. Astrophys. Supp. Ser. vol. 137,is. 1, pp. 7–19. DOI: https://doi.org/10.1051/aas:1999239

17. VASILENKO, N. M., MUKHA, D. V., SIDORCHUK, M. A. and SIDORCHUK, K. M., 2005. Making and Processingof the Northern Sky Maps Based on the Continuum Surveywith the UTR-2 Radio Telescope. Radio Phys. Radio Astron.vol.10, no. 3, pp. 244–253. (in Russian).

18. KRYMKIN, V. V., 1978. Observations of the Rosett nebula NGC 2237 at decametric wavelengths. Astrophys. Space Sci.vol. 54, is. 1, pp. 187–197. DOI: https://doi.org/10.1007/BF00637907

19. ABRAMENKOV, E. A. and KRYMKIN, V. V., 1990. Parameters of the magnetic field in the local Galacticarm derived from low frequency absorption measurements in the ionized gas. In: R. BECK, P. P. KRONBERG,R. WIELEBINSKI, eds. Galactic and Intergalactic Magnetic Fields. Proceedings of the 140th Symposiumof IAU. Dordrecht, Netherlands: Kluwer Academic Publ.,pp. 49–53. DOI: https://doi.org/10.1007/978-94-009-0569-6_14

20. KRYMKIN, V. V. and SIDORCHUK, M. A., 1988. Observationof the galactic anticentre region in the direction of PKS 0607+17 with the UTR-2 and RATAN-600 radio telescopes. Astron. Astrophys. vol. 200, pp. 185–190.

21. SIDORCHUK, M. A. and ABRAMENKOV, E. A., 2006. Supernova Remnants HB3, 3C58 and IC443 at Decametric Waves. Radio Phys. Radio Astron. vol. 11, no. 2, pp. 134–154. (in Russian).

22. KRYMKIN, V. V. and SIDORCHUK, M. A., 1990. Decameter-wave observations of supernova remnant CTA 1. Sov. Astron. vol. 34, no. 2, pp. 197–200.

23. KRYMKIN, V. V., ABRAMENKOV, E. A. and SIDORCHUK,M. A., 1982. Supernova remnant “Monoceros Loop” at decameter waves. Dopovidi AN URSR. No. 3, pp. 44–47. (in Ukrainian).

24. KRYMKIN, V. V., SIDORCHUK, M. A. and ABRAMENKOV, E. A., 1988. Decameter-wave investigation of the supernovaremnant HB9. Sov. Astron. vol. 32, pp. 634–638.

25. KABANOVA, T. I., KRYMKIN, V. V. and SIDORCHUK, M. A., 1989. Low-frequency observations of thesupernova remnant HB21. Kinematika i fizika nebesnyh tel.vol. 5, no. 3, pp. 44–49. (in Russian).

26. KONOVALENKO, A. A., YERIN, S. N., BUBNOV, I. N.,TOKARSKY, P. L., ZAKHARENKO, V. V., ULYANOV,O. M., SIDORCHUK, M. A., STEPKIN, S. V., GRIDIN,A. O., KVASOV, G. V., KOLYADIN, V. L., MELNIK,V. M., DOROVSKYY, V. V., KALINICHENKO,M. M., LITVINENKO, G. V., ZARKA, P., DENIS, L.,GIRARD, J., RUKER, H. O., PANCHENKO, M., STANISLAVSKY, A. A., KHRISTENKO, O. D., MUKHA, D. V., REZNICHENKO, O. M., LISACHENKO,V. M., BORTSOV, V. V., BRAZHENKO, A. I., VASYLIEVA,I. Y., SKORYK, A. O., SHEVTSOVA, A. I. and MYLOSNA, K. Y., 2016. Astrophysical Studies with SmallLow-Frequency Radio Telescopes of New Generation. Radio Phys. Radio Astron. vol. 21, no. 2, pp. 83–131. (in Russian). DOI: https://doi.org/10.15407/rpra21.02.083

27. VASILENKO, N. M. and SIDORCHUK, M. A., 2017. Separation of galactic and extragalactic radio emissionat decameter wavelengths. Astrophys. Space Sci. vol. 362, id. 221. DOI: https://doi.org/10.1007/s10509-017-3202-0

28. SIDORCHUK, K. M., KONOVALENKO, A. A., RUCKER,H. O., LECACHEUX, A., DENIS, L., SIDORCHUK,M. A., RASHKOVSKY, S. L., DOROVSKY, V. V. and ZAKHARENKO, V. V., 2005. New Methods and Equipment of Decametric Radio Astronomy for Continuum Observation at the UTR-2 Radio Telescope. Kinemat. Phys. Celest.Bodies. vol. 21, no. 5, pp. 57–60.

29. BRAUDE, S. YA., RASHKOVSKY, S. L., SIDORCHUK,K. M., SIDORCHUK, M. A., SOKOLOV, K. P., SHARYKIN, N. K. and ZAKHARENKO, S. M., 2002.Decametric Survey of Discrete Sources in the Northern Sky. Astrophys. Space Sci. vol. 280, is. 3, pp. 235–299. DOI: https://doi.org/10.1023/A:1015534108849

30. BRAUDE, S. YA., MIROSHNICHENKO A. P., RASHKOVSKII,S. L., SIDORCHUK, K. M., SIDORCHUK, M. A.and SHARYKIN, N. K., 2003. Decametric Survey of Discrete Sources in the Northern Sky. XIIIb. Spectra of DiscreteSources in the Declination Zone 30○ to 40○. Kinemat. Phys.Celest. Bodies. vol. 19, no. 4, pp. 291–306. (in Russian).

31. SOKOLOV, K. P., 1988. Determination of the parametersof the spatial distribution of extragalactic radio sources observedin the decameter range – P(D) analysis at 25 MHz. Sov. Astron. vol. 32, no. 2, pp. 121–126.

32. SOKOLOV, K. P., 1990. Analysis of the AstrophysicalSignifi cance of Radio Source Counts Obtained in Different Frequency Ranges. Aust. J. Phys. vol. 43, no. 2, pp. 263–269. DOI: https://doi.org/10.1071/PH900263

33. ZAKHARENKO, V., KONOVALENKO, A., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., KOLIADIN,V., KALINICHENKO, N., STANISLAVSKY, A., DOROVSKYY, V., SHEPELEV, V., BUBNOV, I., YERIN, S., MELNIK, V., KOVAL, A., SHEVCHUK, N., VASYLIEVA, I., MYLOSTNA, K., SHEVTSOVA, A., SKORYK, A., KRAVTSOV, I., VOLVACH, Y., PLAKHOV, M., VASILENKO, N., VASYLKIVSKYI, Y., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., RYABOV, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO,V., KVASOV, G., MUKHA, D., LITVINENKO,G., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV,O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHYN,O., RUCKER, H. O., PANCHENKO, M., FISCHER,G., LECACHEUX, A., DENIS, L., COFFRE, A. and GRIEßMEIER, J.-M., 2016. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum. vol. 5, is. 4, id. 1641010. DOI:https://doi.org/10.1142/S2251171716410105


Keywords


decameter range; discrete sources; supernova; remnants; catalog; continuum radio emission; HII regions; UTR-2; background emission

Full Text:

PDF


Creative Commons License

Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0) .