FEATURES OF IONOSPHERIC EFFECTS FROM THE PARTIAL SOLAR ECLIPSE OVER THE CITY OF KHARKIV ON 10 JUNE 2021

DOI: https://doi.org/10.15407/rpra26.04.326

L. F. Chernogor, K. P. Garmash, Y. H. Zhdanko, S. G. Leus, Y. Luo

Abstract


Purpose: Solar eclipses pertain to high-energy sources of disturbance in the subsystems of the Sun–interplanetary-medium–magnetosphere–ionosphere–atmosphere–Earth and the Earth–atmosphere–ionosphere–magnetosphere systems. During the solar eclipse, the coupling between the subsystems in these systems activates, and the parameters of the dynamic processes become disturbed. Investigation of these processes contributes to understanding of the structure and dynamics of the subsystems. The ionospheric response to the solar eclipse depends on the season, local time, magnitude of the solar eclipse, phase of the solar cycle, the observation site, the state of space weather, etc. Therefore, the study of the effects, which each new solar eclipse has on the ionosphere remains an urgent geophysics and radio physics problem. The purpose of this paper is to describe the radio wave characteristics and ionospheric parameters, which accompanied the partial solar eclipse of 10 June 2021 over the City of Kharkiv.

Design/methodology/approach: To make observations, the means of the HF Doppler measurements at vertical and oblique incidence available at the V. N. Karazin Kharkiv National University Radiophysical Observatory were employed. The data obtained at the “Lviv” Magnetic Observatory were used for making intercomparison.

Findings: The radiophysical observations have been made of the dynamic processes acting in the ionosphere during the solar eclipse of 10 June 2021 and on the reference days. The temporal variations in the Doppler frequency shift observed at vertical and oblique radio paths have been found to be, as a whole, similar. Generally speaking, the Doppler spectra over these radio propagation paths were different. Over the oblique radio paths, the number of rays was greater. The solar eclipse was accompanied by wave activity enhancement in the atmosphere and ionosphere. At least three wave trains were observed. The values of the periods (about 5–12 min) and the relative amplitudes of perturbations in the electron density (δN≈0.3–0.6 %) give evidence that the wave disturbances were caused by atmospheric gravity waves. The amplitude of the 6–8-min period geomagnetic variations has been estimated to be 0.5–1 nT. Approximately the same value has been recorded in the X component of the geomagnetic field at the nearest Magnetic Observatory. The aperiodic effect of the solar eclipse has appeared to be too small (less than 0.01 Hz) to be observed confidently. The smallness of the effect was predetermined by an insignificant magnitude of the partial eclipse over the City of Kharkiv (no more than 0.11).

Conclusions: The features of the solar eclipse of 10 June 2021 include an insignificant magnitude of the aperiodic effect and an enhancement in wave activity in the atmosphere and ionosphere.

Key words: solar eclipse; ionosphere; Doppler spectrum; Doppler frequency shift; electron density; geomagnetic field; atmospheric gravity wave

Manuscript submitted 05.08.2021

Radio phys. radio astron. 2021, 26(4): 326-343

REFERENCES

1. CHERNOGOR, L. F. and ROZUMENKO, V. Т., 2008. Earth – Atmosphere – Geospace as an Open Nonlinear DynamicalSystem. Radio Phys. Radio Astron. vol. 13, is. 2,pp. 120–137.

2. CHERNOGOR, L. F., 2013. Physical effects of solar eclipsesin atmosphere and geospace. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).

3. CHAPMAN, S., 1932. The influence of a solar eclipse upon the upper atmospheric ionization. Mon. Not. R. Astron. Soc. vol. 92, pp. 413–420. DOI: https://doi.org/10.1093/mnras/92.5.413

4. HIGGS, A. J., 1942. Ionospheric measurements made during the total Solar eclipse of 1940 October 1. Mon. Not. R. Astron. Soc. vol. 102, is. 1, pp. 24–34. DOI: https://doi.org/10.1093/mnras/102.1.24

5. LEDIG, P. G., JONES, M. W., GIESECKE, A. A. and CHERNOSKY, E. J., 1946. Effects on the ionosphere at Huancayo, Peru, of the solar eclipse, January 25, 1944. J. Geophys. Res. vol. 51, is. 3, pp. 411–418. DOI: https://doi.org/10.1029/TE051i003p00411

6. BEYNON, W. J. G. and BROWN, G. M., eds., 1956. Solareclipses and the ionosphere: a symposium held under theauspices of the International Council of Scientific Unions, Mixed Commission on the Ionosphere, in London in August 1955. London: Pergamon Press.

7. CHERNOGOR, L. F., 2010. Variations in the Amplitude andPhase of VLF Radiowaves in the Ionosphere during the August1, 2008, Solar Eclipse. Geomagn. Aeron. vol. 50, is. 1, pp. 96–106. DOI: https://doi.org/10.1134/S0016793210010111

8. CHERNOGOR, L. F., 2010. Wave Response of the Ionosphere to the Partial Solar Eclipse of August 1, 2008. Geomagn. Aeron. vol. 50, is. 3, pp. 346–361. DOI: https://doi.org/10.1134/S0016793210030096

9. DING, F., WAN, W., NING, B., LIU, L., LE, H., XU, G., WANG, M., LI, G., CHEN, Y., REN, Z., XIONG, B., HU, L.,YUE, X., ZHAO, B., LI, F. and YANG, M., 2010. GPS TE Cresponse to the 22 July 2009 total solar eclipse in East Asia. J. Geophys. Res. Spase Phys. vol. 115, is. A7, id. A07308.DOI: https://doi.org/10.1029/2009JA015113

10. LE, H., LIU, L., DING, F., REN, Z., CHEN, Y., WAN, W., NING, B., XU, G., WANG, M., LI, G., XIONG, B. and HU, L., 2010. Observations and modeling of the ionospheric behaviors over the east Asia zone during the 22 July 2009 solar eclipse. J. Geophys. Res. Spase Phys. vol. 115, is. A10, id. A10313. DOI: https://doi.org/10.1029/2010JA015609

11. SHARMA, S., DASHORA, N., GALAV, P. and PANDEY, R., 2010. Total solar eclipse of July 22, 2009: Its impact on the total electron content and ionospheric electron density in the Indian zone. J. Atmos. Sol.-Terr. Phys. vol. 72, is. 18, pp. 1387–1392. DOI: https://doi.org/10.1016/j.jastp.2010.10.006

12. CHEN, G., ZHAO, Z., NING, B., DENG, Z., YANG, G.,ZHOU, C., YAO, M., LI, S. and LI, N., 2011. Latitudinal dependence of the ionospheric response to solar eclipse of 15 January 2010. J. Geophys. Res. Spase Phys. vol. 116, is. A6, id. A06301. DOI: https://doi.org/10.1029/2010JA016305

13. CHERNOGOR, L. F., 2011. The Earth–atmosphere–geospace system: main properties and processes. Int. J. Rem. Sens. vol. 32, is. 11, pp. 3199–3218. DOI: https://doi.org/10.1080/01431161.2010.541510

14. GARMASH, K. P., LEUS, S. G. and CHERNOGOR, L. F., 2011. January 4, 2011 Solar Eclipse Effects over Radio Circuits at Oblique Incidence. Radio Phys. Radio Astron.vol. 16, is. 2, pp. 164–176. (in Russian). DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i4.50

15. CHERNOGOR, L. F., 2012. Effects of solar eclipses in theionosphere: Results of Doppler sounding: 1. Experimental data. Geomagn. Aeron. vol. 52, is. 6, pp. 768–778. DOI: https://doi.org/10.1134/S0016793212050039

16. CHERNOGOR, L. F., 2012. Effects of Solar Eclipses inthe Ionosphere: Doppler Sounding Results: 2. Spectral Analysis. Geomagn. Aeron. vol. 52, is. 6, pp. 779–792. DOI:https://doi.org/10.1134/S0016793212050040

17. MADHAV HARIDAS, M. K. and MANJU, G., 2012. On theresponse of the ionospheric F region over Indian low-latitude station Gadanki to the annular solar eclipse of 15January 2010. J. Geophys. Res. Spase Phys. vol. 117, is. A1, id. A01302. DOI: https://doi.org/10.1029/2011JA016695

18. BURMAKA, V. P. and CHERNOGOR, L. F., 2013. Solareclipse of August 1, 2008, above Kharkov: 2. Observationresults of wave disturbances in the ionosphere. Geomagn. Aeron. vol. 53, is. 4, pp. 479–491. DOI: https://doi.org/10.1134/S001679321304004X

19. BURMAKA, V. P., DOMNIN, I. F. and CHERNOGOR, L. F, 2012. Radiophysical observations of acoustic-gravity waves in the ionosphere during solar eclipse of January 4, 2011. Radio Phys. Radio Astron. vol. 17, is. 4, pp. 344–352. (in Russian).

20. CHERNOGOR, L. F., 2013. Physical Processes in the Middle Ionosphere Accompanying the Solar Eclipse of January4, 2011, in Kharkov. Geomagn. Aeron. vol. 53, is. 1, pp. 19–31. DOI: https://doi.org/10.1134/S0016793213010052

21. DOMNIN, I. F., YEMELʼYANOV, L. YA., KOTOV, D. V., LYASHENKO, M. V. and CHERNOGOR, L. F., 2013. Solareclipse of August 1, 2008, above Kharkov: 1. Results of incoherentscatter observations. Geomagn. Aeron. vol. 53, is. 1, pp. 113–123. DOI: https://doi.org/10.1134/S0016793213010076

22. LYASHENKO, M. V. and CHERNOGOR, L. F., 2013. Solar eclipse of August 1, 2008, over Kharkov: 3. Calculationresults and discussion. Geomagn. Aeron. vol. 53, is. 3,pp. 367–376. DOI: https://doi.org/10.1134/S0016793213020096

23. PITOUT, F., BLELLY, P.-L. and ALCAYDÉ, D., 2013. Highlatitude ionospheric response to the solar eclipse of 1 August 2008: EISCAT observations and TRANSCAR simulation.J. Atmos. Sol.-Terr. Phys. vol. 105–106, pp. 336–349. DOI:https://doi.org/10.1016/j.jastp.2013.02.004

24. CHEN, G., WU, C., HUANG, X., ZHAO, Z., ZHONG, D., QI, H., HUANG, L., QIAO, L. and WANG, J., 2015. Plasma flux and gravity waves in the midlatitude ionosphere during the solar eclipse of 20 May 2012. J. Geophys. Res. Space Phys. vol. 120, is. 4, pp. 3009–3020. DOI: https://doi.org/10.1002/2014JA020849

25. ADEKOYA, B. J. and CHUKWUMA, V. U., 2016. Ionospheric F2 layer responses to total solar eclipses at lowand mid-latitude. J. Atmos. Sol.-Terr. Phys. vol. 138–139,pp. 136–160. DOI: https://doi.org/10.1016/j.jastp.2016.01.006

26. CHERNOGOR, L. F., 2016. Atmosphere-ionosphere responseto solar eclipse over Kharkiv on March 20, 2015. Geomagn. Aeron. vol. 56, is. 5, pp. 592–603. DOI: https://doi.org/10.1134/S0016793216050030

27. CHERNOGOR, L. F., 2016. Wave Processes in the Ionosphere over Europe that Accompanied the Solar Eclipse of March 20, 2015. Kinemat. Phys. Celest. Bodies. vol. 32, is. 4,pp. 196–206. DOI: https://doi.org/10.3103/S0884591316040024

28. MARLTON, G. J., WILLIAMS, P. D. and NICOLL, K. A., 2016. On the detection and attribution of gravity wavesgenerated by the 20 March 2015 solar eclipse. Phil. Trans. R. Soc. A. vol. 374, is. 2077, id. 20150222. DOI: https://doi.org/10.1098/rsta.2015.0222

29. URYADOV, V. P., KOLCHEV, A. A., VYBORNOV, F. I., SHUMAEV, V. V., EGOSHIN, A. I. and CHERNOV, A. G., 2016. Ionospheric effects of a solar eclipse of March 20,2015 on oblique sounding paths in the Eurasian longitudinalsector. Radiophys. Quantum Electron. vol. 59, is. 6, pp. 431–441. DOI: https://doi.org/10.1007/s11141-016-9711-9

30. VERHULST, T. G. W., SAPUNDJIEV, D. and STANKOV,S. M., 2016. High-resolution ionospheric observationsand modeling over Belgium during the solar eclipse of 20 March 2015 including first results of ionospheric tilt and plasma drift measurements. Adv. Space Res. vol. 57, is. 11,pp. 2407–2419. DOI: https://doi.org/10.1016/j.asr.2016.03.009

31. CHERNOGOR, L. F. and GARMASH, K. P., 2017. Magneto-Ionospheric Effects of the Solar Eclipse of March 20, 2015, over Kharkov. Geomagn. Aeron. vol. 57, is. 1, pp. 72–83.DOI: https://doi.org/10.1134/S0016793216060062

32. COSTER, A. J., GONCHARENKO, L., ZHANG, S.-R.,ERICKSON, P. J., RIDEOUT, W. and VIERINEN, J., 2017.GNSS observations of ionospheric variations during the21 August 2017 solar eclipse. Geophys. Res. Lett. vol. 44,is. 24, pp. 12041–12048. DOI: https://doi.org/10.1002/2017GL075774

33. HUBA, J. D. and DROB, D., 2017. SAMI3 prediction of theimpact of the 21 August 2017 total solar eclipse on the ionosphere/plasmasphere system. Geophys. Res. Lett. vol. 44,is. 12, pp. 5928–5935. DOI: https://doi.org/10.1002/2017GL073549

34. STANKOV, S. M., BERGEOT, N., BERGHMANS, D., BOLSÉE, D., BRUYNINX, C., CHEVALIER, J. M., CLETTE,F., DE BACKER, H., DE KEYSER, J., DʼHUYS, E.,DOMINIQUE, M., LEMAIRE, J. F., MAGDALENIĆ, J., MARQUÉ, C., PEREIRA, N., PIERRARD, V., SAPUNDJIEV, D., SEATON, D. B., STEGEN, K., VAN DER LINDEN, R., VERHULST, T. G. W. and WEST, M. J., 2017. Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. J. Space Weather Space Clim. vol. 7, id. A19. DOI: https://doi.org/10.1051/swsc/2017017

35. ZHANG, S.-R., ERICKSON, P. J., GONCHARENKO, L. P., COSTER, A. J., RIDEOUT, W. and VIERINEN, J., 2017. Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse. Geophys. Res. Lett. vol. 44,is. 24, pp. 12067–12073. DOI: https://doi.org/10.1002/2017GL076054

36. CHERNIAK, I. and ZAKHARENKOVA, I., 2018. Ionospheric total electron content response to the great Americansolar eclipse of 21 August 2017. Geophys. Res. Lett. vol. 45, is. 3, pp. 1199–1208. DOI: https://doi.org/10.1002/2017GL075989

37. DANG, T., LEI, J., WANG, W., BURNS, A., ZHANG, B. and ZHANG, S.-R., 2018. Suppression of the Polar Tongue of Ionization During the 21 August 2017 Solar Eclipse. Geophys. Res. Lett. vol. 45, is. 7, pp. 2918–2925. DOI:https://doi.org/10.1002/2018GL077328

38. DANG, T., LEI, J., WANG, W., ZHANG, B., BURNS, A., LE, H., WU, Q., RUAN, H., DOU, X. and WAN, W., 2018. Global responses of the coupled thermosphere and ionosphere system to the August 2017 Great American Solar Eclipse. J. Geophys. Res. Space Phys. vol. 123, is. 8, pp. 7040–7050. DOI: https://doi.org/10.1029/2018JA025566

39. CHERNOGOR, L. F., DOMNIN, I. F., EMELYANOV, L. YA. and LYASHENKO, M. V., 2019. Physical processes in the ionosphere during the solar eclipse on March 20, 2015 over Kharkiv, Ukraine (49.6° N, 36.3° E). J. Atmos. Sol.-Terr. Phys. vol. 182, pp. 1–9. DOI: https://doi.org/10.1016/j.jastp.2018.10.016

40. PANASENKO, S. V., OTSUKA, Y., VAN DE KAMP, M.,CHERNOGOR, L. F., SHINBORI, A., TSUGAWA, T. and NISHIOKA, M., 2019. Observation and characterization of traveling ionospheric disturbances induced by solar eclipseof 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Sol.-Terr. Phys. vol. 191, id. 105051. DOI: https://doi.org/10.1016/j.jastp.2019.05.015

41. WANG, W., DANG, T., LEI, J., ZHANG, S., ZHANG, B. and BURNS, A., 2019. Physical processes driving theresponse of the F2 region ionosphere to the 21 August 2017 solar eclipse at Millstone Hill. J. Geophys. Res. Space Phys. vol. 124, is. 4, pp. 2978–2991. DOI: https://doi.org/10.1029/2018JA025479

42. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO,V. T. and ZHENG, Y., 2020. Radio Monitoring of Dynamic Processes in the Ionosphere Over China During the Partial Solar Eclipse of 11 August 2018. RadioSci. vol. 55, is. 2, id. e2019RS006866. DOI: https://doi.org/10.1029/2019RS006866

43. CHERNOGOR, L. F., GARMASH, K. P., ZHDANKO, Y. H., LEUS, S. G. and PODNOS, V. A., 2020. Software and hardwaresystem of multi-frequency oblique sounding the ionosphere.Visnyk of V. N. Karazin Kharkiv National University.Series “Radio Physics and Electronics”. is. 33, pp. 42–59. (in Ukrainian). DOI: https://doi.org/10.26565/2311-0872-2020-33-04

44. MARPLE JR., S. L., 1987. Digital spectral analysis withapplications. Englewood Cliffs, N.J.: Prentice-Hall.

45. CHERNOGOR, L. F., GARMASH, K. P., PODNOS, V. A. and TYRNOV O. F., 2013. The V. N. Karazin KharkivNational University Radio Physical Observatory – thetool for ionosphere monitoring in space experiments. In:S. A. ZASUKHA and O. P. FEDOROV, eds. Space Project Ionosat-Micro”. Kyiv, Ukraine: Academperiodika Publ.,pp. 160–182. (in Russian).

46. GOSSARD, E. E. and HOOKE, W. H., 1975. Waves in theAtmosphere: Atmospheric infrasound and gravity waves,their generation and propagation. Amsterdam, New York:Elsevier Scientifi c Publ. Co.

47. CHERNOGOR, L. F., 2012. Physics and Ecology of Disasters. Kharkiv, Ukraine: V. N. Karazin Kharkiv NationalUniversity Publ. (in Russian).

48. CHERNOGOR, L. F., 2009. Radio Physical and GeomagneticEffects of Rocket Launches. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).


Keywords


solar eclipse; ionosphere; Doppler spectrum; Doppler frequency shift; electron density; geomagnetic field; atmospheric gravity wave

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)