FRACTAL RADIOPHYSICS. Part 2. FRACTAL AND MULTIFRACTAL ANALYSIS METHODS OF SIGNALS AND PROCESSES

DOI: https://doi.org/10.15407/rpra28.01.005

O. V. Lazorenko, L. F. Chernogor

Abstract


Subject and Purpose. The subject of this paper is to review the principal methods of fractal and multifractal analysis of signals and processes, in combination with a detailed consideration of the algorithms that can provide for a successful practical implementation of the methods described.

Methods and Methodology. The results presented concern modeling of both deterministic and stochastic fractal and multifractal signals and processes. The corresponding practical methods of analysis are considered, with discussion of their essential features, advantages and disadvantages, as well as of the problems of application that may exist.

Results. Several approaches have been discussed as to categorizing the signals and processes within the notion of fractality. A few tens of models of deterministic and stochastic fractal or multifractal signals and processes have been analyzed in detail. Over twenty methods of monofractal analysis have been analyzed, with identifi cation of their features, advantages or disadvantages, and limits of applicability. The expediency of resorting to complex methods of monofractal analysis has also been discussed. Those methods are not based upon application of fractal analysis techniques alone but rather combine them with linear and nonlinear integral time-frequency transforms. The effectiveness of the ten most popular multifractal analysis techniques has been confirmed, with consideration of their special features, advantages and drawbacks.

Conclusion. The mathematical foundations have been presented which underlie modern methods of analysis and modeling of fractal and multifractal signals and processes. The methods discussed may allow revealing a great amount of unique hidden information on the world around us.

Keywords: fractal, fractal dimension, fractal signal, fractal analysis, multifractal analysis

Manuscript submitted 15.05.2022

Radio phys. radio astron. 2023, 28(1): 005-070

REFERENCES

1. Lazorenko, O.V., and Chernogor, L.F., 2020. Fractal Radio Physics. 1. Th eoretical Bases. Radiophysics and Radioastronomy. 25(1), pp. 3-77. (in Rusiian). DOI: :https://doi.org/10.15407/rpra25.01.003

2. Madisetti, V. K., ed., 2014. The Digital Signal Processing Handbook. Wireless, Networking, Radar, Sensor Array Processing, and Nonlinear Signal Processing. Boca Raton: CRC Press.

3. Cohen, L., 1994. Time-Frequency Analysis. New Jersey: Prentice Hall PTR.

4. Lazorenko, O.V., and Chernogor, L.F., 2009. Ultra-Wideband Signals and Processes. Monograph. Kharkiv: V.N. Karazin Kharkiv National University (in Russian).

5. Gil'mutdinov, A.K., Ushakov, P.A., and El-Kharazi, R., 2017. Fractal Elements and their Applications. Cham, Switzerland: Springer Int. Publ.

6. Kantz, H., and Schreiber, T., 2003. Nonlinear Time Series Analysis. New York: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511755798

7. Astanin L.Y., Kostylev A.A., 1997. Ultrawideband Radar Measurements: Analysis and Processing. London: The Institute of Electrical Engineers. DOI: https://doi.org/10.1049/PBRA007E

8. Wornell, G., 1996. Signal Processing with Fractals: A Wavelet-Based Approach. Englwood Cliff s, NJ: Prentice Hall PTR.

9. Cattani, C., 2009. Wavelet Based Approach to Fractals and Fractal Signal Denoising. Lecture Notes in Computer Science, pp. 143–162. DOI:https://doi.org/10.1007/978-3-642-10649-1_9

10. Gel’fand, I.M., Shilov, G.E., Vilenkin, N.Y., and Graev, M.I., 1964. Generalized Functions. Vol. 1. Properties and Operators. New York: Academic Press.

11. Mandelbrot, B.B., 1983. The Fractal Geometry of Nature. New York: W.H. Freeman and Company. DOI:https://doi.org/10.1119/1.13295

12. Du Bois-Reymond, P., 1895. Versuch einer Classifi cation der willkurlichen Functionen reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen. J. fur die Reine und Angew. Math. (Crelle), 79, pp. 21–37. DOI:https://doi.org/10.1515/9783112389881-003

13. Bandt, C., Barnsley, M., Devaney, R., Falcone, K.J., Kannan, V., and Vinod Kumar, P.B., eds., 2014. Fractals, Wavelets, and their Applications: Contributions from the International Conference and Workshop on Fractals and Wavelets (Springer Proceedings in Mathematics & Statistics). Switzerland: Springer Int. Publ. DOI:https://doi.org/10.1007/978-3-319-08105-2

14. Bailland, B., and Bourget, H., 1905. Correspondance d’Hermite et de Stieltjes. Paris: Gauthier-Villars.

15. Peintgen, H.-O., and Saupe, D., eds., 1988. Th e Science of Fractal Images. New York: Springer-Verlag.

16. Crownover, R.M., 1995. Introduction to Fractals and Chaos. Boston: Jones and Bartlett Publ.

17. Schroeder, M., 1991. Fractals, Chaos, Power Laws: Minutes from an Infi nite. New York: W.H. Freeman and Company. DOI:https://doi.org/10.1063/1.2810323

18. Perrin, J., 1906. La discontinuite de la matiere. Revue du mois., 1, pp. 323–344.

19. Massopust, P.R., 2016. Fractal Functions, Fractal Surfaces and Wavelets. Amsterdam, Boston et al.: Academic Press.https://doi.org/10.1016/B978-0-12-804408-7.00008-4

20. Falconer, K., 2003. Fractal Geometry. Mathematical Foundations and Applications. 2nd Ed. Chichester: John Wiley & Sons. DOI:https://doi.org/10.1002/0470013850

21. Bandt, C., Falconer, K., and Zaehle, M., 2015. Fractal Geometry and Stochastics V. Basel: Birkhauser Verlag. DOI:https://doi.org/10.1007/978-3-319-18660-3

22. Holschneider, M., 1995. Wavelets: An Analysis Tool. Oxford: Calderon Press.

23. Hardy, G.H., 1916. Weierstrass’s non-differentiable function. Trans. AMS, 17, pp. 301–325. DOI:https://doi.org/10.1090/S0002-9947-1916-1501044-1

24. Feder, J., 1988. Fractals. New York and London: Springer Science. DOI:https://doi.org/10.1007/978-1-4899-2124-6

25. Berry, M.V., and Lewis, Z.V., 1980. On the Weierstrass–Mandelbrot Fractal Function. Proc. R. Soc. A: Math. Phys. Eng. Sci., 370(1743), pp. 459–484. DOI:https://doi.org/10.1098/rspa.1980.0044

26. West, B.J., Bologna, M., and Grigolini, P., 2003. Physics of Fractal Operators. New York: Springer-Verlag. DOI:https://doi.org/10.1007/978-0-387-21746-8

27. Gerver, J., 1970. The Differentiability of the Riemann Function at Certain Rational Multiples of π. Am. J. Math., 92(1), pp. 33–55. DOI:https://doi.org/10.2307/2373496

28. Lashermes, B., Jaff ard, S., and Abry, P., 2005. Wavelet Leader based Multifractal Analysis. In: 2005 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP ‘05). Philadelphia, Pennsylvania, USA, 18–23 March 2005. IEEE, 2005. DOI:https://doi.org/10.1109/ICASSP.2005.1415970

29. Celleґrier, M.Ch., 1890. Note sur les principes fondamentaux de l’analyse. Darboux Bull., 14, pp. 142–160.

30. Th im, J., 2003. Continuous nowhere differentiable functions: Master thesis. Lulea: Lulea University of Technology.

31. Raghavendra, B.S., and Narayana Dutt, D., 2010. Computing fractal dimension of signals using multiresolution box-counting method. Int. J. Inf. Math. Sci., 6(1), pp. 50–65.

32. Liaw, S.-S., and Chiu, F.-Y., 2009. Fractal dimensions of time sequences. Physica A, 388(15–16), pp. 3100–3106. DOI:https://doi.org/10.1016/j.physa.2009.04.011

33. Mallat, S., 1998. A Wavelet Tour of Signal Processing. San Diego, CA: Academic Press. DOI:https://doi.org/10.1016/B978-012466606-1/50008-8

34. Meyer Y., 1993. Wavelets: Algorithms and Applications. Philadelphia: SIAM.

35. Shelevytsky, I., and Novikova, O., 2013. Fractal Spline Signals: Synthesis and Estimation. In: 2013 IEEE XXXIII Int. Scientific Conf. Electronics and Nanotechnology (ELNANO). Kyiv, Ukraine. 16–19 April 2013. DOI:https://doi.org/10.1109/ELNANO.2013.6552006

36. Chernogor, L.F., and Lazorenko, O.V., 2004. Fractal Ultra-Wideband Signals. In: Proc. Second International Workshop “Ultrawideband and Ultrashort Impulse Signals”. Sevastopol, Ukraine, 19–22 Sept. 2004. Sevastopol, 2004, pp. 118–120.

37. Lazorenko, O.V., and Chernogor, L.F., 2005. Fractal Ultra–Wideband Signals. Radiophysics and Radioastronomy, 10(1), pp. 62–84 (in Russian).

38. Chernogor, L.F., Lazorenko, O.V., and Onishchenko, A.A., 2016. New Models of the Fractal Ultra–Wideband Signals. In: Proc. 8th Int. Conf. Ultrawideband and Ultrashort Impulse Signals. Odessa, Ukraine. 5–11 Sept. 2016. Odessa, 2016. Р. 89–92. DOI:https://doi.org/10.1109/UWBUSIS.2016.7724158

39. Chernogor, L.F., Lazorenko, O.V., and Lazorenko, S.V., 2002. Wavelet Analysis and Ultra–Wideband Signals. Radio Physics & Radio Astronomy, 7(4), pp. 471–474.

40. Lazorenko, O.V., Lazorenko, S.V., and Chernogor, L.F., 2002. Application of the Wavelet Analysis to the Problem of Ultra-Wideband Signal Detection on a Noise Background. Radio Physics & Radio Astronomy, 7(1), pp. 46–63 (in Russian).

41. Goncalves, P., and Flandrin, P., 1992. Bilinear time-scale analysis applied to local scaling exponents estimation. In: Y. Meyer and S. Roques, eds. Progress in Wavelet Analysis and Applications. Editions Frontieres, pp. 271–276.

42. Goncalves, P., and Flandrin, P., 1992. Scaling exponents estimation from timescale energy distributions. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP-92). San Francisco, CA, 23–26 March 1992. Vol. 5, pp. 157–60. DOI:https://doi.org/10.1109/ICASSP.1992.226634

43. Samorodnitsky, G., and Taqqu, M.S., 1994. Stable Non–Gaussian Random Processes, Stochastic Modeling. New York, NY, USA: Chapman & Hall.

44. Mandelbrot, B., 1965. Une classe de processus stochastiques homothetiques a soi. Application a la loi climatologique de H.E. Hurst. Comptes Rendus de l’Academie des Sciences de Paris, 240, pp. 3274–3277.

45. Pashchenko, R.E. ed., 2006. Fractal Analysis of Processes, Structures and Signals. Collective Monograph. Kharkiv, Ukraine: NEO EkoPerspektiva Publ. (in Russian).

46. Radivilova, T., Kirichenko, L., Ageiev, D., and Bulakh, V., 2020. The methods to improve quality of service by accounting secure parameters. In: Hu, Z, Petoukhov, S., Dychka, I., He, M. eds. Advances in computer science for engineering and education II. ICCSEEA 2019. Advances in intelligent systems and computing. Vol. 938, pp. 346–355. Springer, Cham. DOI:https://doi.org/10.1007/978-3-030-16621-2_32

47. Mandelbrot, B.B., and Van Ness, J.W., 1968. Fractional Brownian motions, fractional noises and applications. SIAM Rev., 10, pp. 422–437. DOI:https://doi.org/10.1137/1010093

48. Dauphine, A., 2012. Fractal Geography. London, Hoboken: John Wiley & Sons.

49. Kolmogorov, A.N., 1940. Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen raum. Comptes Rendus (Doklady) de l’Academie des Sciences de l’URSS (N.S.), 26, pp. 115–118.

50. Davies, R.B., and Harte, D.S., 1987. Tests for Hurst eff ect. Biometrika, 74(1), pp. 95–101. DOI:https://doi.org/10.1093/biomet/74.1.95

51. Eke, A., Herman, P., Kocsis, L., and Kozak, L.R., 2002. Fractal characterization of complexity in temporal physiological signals.     1. Physiol. Meas., 23, pp. R1–R38. DOI:https://doi.org/10.1088/0967-3334/23/1/201

52. Sithi, V.M., and Lim, S.C., 1995. On the spectra of Riemann-Liouville fractional Brownian motion. J. Phys. A Math. Gen., 28(11), pp. 2995–3003. DOI:https://doi.org/10.1088/0305-4470/28/11/005

53. Pashchenko, R.E., 2005. Fundamentals of the Theory of Fractal Signal Formation. Kharkiv, Ukraine: NEO EkoPerspectiva Publ. (in Russian).

54. Kirichenko, L.O., and Radivilova, T.A., 2019. Fractal Analysis of Self-Similar and Multifractal Time Series. Kharkiv: KhNURE.

55. Muniandy, S.V., Lim, S.C., and Murugan, R., 2001. Inhomogeneous scaling behaviors in Malaysian foreign currency exchange 2. rates. Physica A, 301(1–4), pp. 407–428. DOI:https://doi.org/10.1016/S0378-4371(01)00387-9

56. Di Ieva, A. ed., 2016. The Fractal Geometry of the Brain. New York: Springer-Verlag. DOI:https://doi.org/10.1007/978-1-4939-3995-4

57. Karperien, A.L., and Jelinek, H.F., 2015. Fractal, multifractal, and lacunarity analysis of microglia in tissue engineering. Front. Bioeng. Biotechnol., 3, article 51. DOI:https://doi.org/10.3389/fbioe.2015.00051

58. Klinkenberg, B., 1994. A review of methods used to determine the fractal dimension of linear features. Math. Geol., 26(1), pp. 23–46. DOI:https://doi.org/10.1007/BF02065874

59. Prei.l, H., Lutzenberger, W., Pulvermuller, F., and Birbaumer, N., 1997. Fractal dimensions of short EEG time series in humans. Neurosci. Lett., 225(2), pp. 77–80. DOI:https://doi.org/10.1016/S0304-3940(97)00192-4

60. Lopes, R., and Betrouni, N., 2009. Fractal and multifractal analysis: A review. Med. Image Anal., 13, pp. 634–649. DOI:https://doi.org/10.1016/j.media.2009.05.003

61. Esteller, R., Vachtsevanos, G., Echauz, J., and Litt, B., 2001. A comparison of waveform fractal dimension algorithms. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 48, pp. 177–183. DOI:https://doi.org/10.1109/81.904882

62. Seuront, L., 2010. Fractals and Multifractals in Ecology and Aquatic Science. Boca Raton, London, New York: CRC Press. DOI:https://doi.org/10.1201/9781420004243

63. Jura, J., Kubena, A.A., and Novak, M., 2017. Development of Methods of the Fractal Dimension Estimation for the Ecological Data Analysis. In: Matoušek, R. ed., 2017. Recent Advances in Soft Computing. Advances in Intelligent Systems and Computing, pp. 252–263. DOI:https://doi.org/10.1007/978-3-319-58088-3

64. Berry, M., 1979. Diffractals. J. Phys. A. Math. Gen., 12, pp. 781–97. DOI:https://doi.org/10.1088/0305-4470/12/6/008

65. Pentland, A., 1984. Fractal-based description of natural scenes. IEEE Trans. Pattern Anal. Mach. Intell, 6(6), pp. 661–674. DOI:https://doi.org/10.1109/TPAMI.1984.4767591

66. Hastings, H.M., and Sugihara, G., 1993. Fractals: A User’s Guide for the Natural Science. Oxford: Oxford University Press.

67. Crilly, A.J., Earnshow, R.A., and Jones, H., eds., 1993. Applications of Fractals and Chaos: The Shape of Th ings. Heidelberg: Springer-Verlag.

68. Super, B.J., and Bovik, A.C., 1991. Localized measurement of image fractal dimension using gabor fi lters. J. Vis. Commun. Image Represent., 2(2), pp. 114–128. DOI:https://doi.org/10.1016/1047-3203(91)90002-W

69. Eke, A., Herman, P., Bassingthwaighte, J., Raymond, G., Percival, D., Cannon, M., Balla, I., & Ikrenyi, C., 2000. Physiological time series: distinguishing fractal noises from motions. Pflugers Arch. – Eur. J. Physiol., 439(4), pp. 403–415. DOI:https://doi.org/10.1007/s004249900135

70. Dimri, V.P. ed., 2005. Fractal Behavior of the Earth System. Berlin, Heidelberg: Springer-Verlag. DOI:https://doi.org/10.1007/b137755

71. Lomb, N.R., 1976. Least–squares frequency analysis of unequally spaced data. Astrophys. Space Sci., 39, pp. 447–462. DOI:https://doi.org/10.1007/BF00648343

72. Telesca, L., Colangelo, G., Lapenna, V., and Macchiato M., 2003. Monofractal and multifractal characterization of geoelectrical signals measured in southern Italy. Chaos Solit. Fractals, 18, pp. 385–399. DOI:https://doi.org/10.1016/S0960-0779(02)00655-0

73. Yamamoto, Y., and Hughson, R.L., 1991. Coarse–graining spectral analysis: new method for studying heart rate variability. J. Appl. Physiol., 71(3), pp. 1143–1150. DOI:https://doi.org/10.1152/jappl.1991.71.3.1143

74. Yamamoto, Y., and Hughson, R.L., 1993. Extracting fractal components from time series. Physica D, 68(2), pp. 250–264. DOI:https://doi.org/10.1016/0167-2789(93)90083-D

75. Yamamoto, Y., 1999. Detection of Chaos and Fractals from Experimental Time Series. In: Windhorst U., Johansson H. eds. Modern Techniques in Neuroscience Research. Springer, Berlin, Heidelberg. 1999. P. 669–687. DOI:https://doi.org/10.1007/978-3-642-58552-4_24

76. Russell, D.A., Hanson, J.D., and Ott, E., 1980. Dimension of Strange Attractors. Phys. Rev. Lett., 45(14), pp. 1175–1178. DOI:https://doi.org/10.1103/PhysRevLett.45.1175

77. Pontrjagin, L. & Schnirelman, L., 1932. Sur une propriete metrique de la dimension. Ann. Math, 33, pp. 156–162. DOI:https://doi.org/10.2307/1968109

78. Normant, F., and Tricot, C., 1991. Method for evaluating the fractal dimension of curves using convex hulls. Phys. Rev. A, 43(12), pp. 6518–6525. DOI:https://doi.org/10.1103/PhysRevA.43.6518

79. Appleby, S., 1996. Multifractal characterization of the distribution pattern of the human population. Geogr. Anal., 28(2), pp. 147–160. DOI:https://doi.org/10.1111/j.1538-4632.1996.tb00926.x

80. Pruess, S.A., 1995. Some Remarks on the Numerical Estimation of Fractal Dimension. In: Barton, C.C., La Pointe, P.R. eds., 1995. Fractals in the Earth Sciences. Boston, MA: Springer. DOI:https://doi.org/10.1007/978-1-4899-1397-5_3

81. Sanderson, B., Goulding, A., and Okubo, A. 1990. The fractal dimension of relative Lagrangian motion. Tellus, 42A, pp. 550–556. DOI:https://doi.org/10.1034/j.1600-0870.1990.t01-4-00005.x

82. Adler, C., Carter, P., and Cawley, R., 1987. A comparison of the fractal dimension of cloud radiance graphs for two infrared color bands. In: Kim, Y.S., and Zachary, W.W. eds., 1987. The Physics of Phase Space. Berlin: Springer-Verlag. DOI:https://doi.org/10.1007/3-540-17894-5_316

83. Carter, P., Cawley, R., and Mauldin, R.D., 1988. Mathematics of dimension measurements for graphs of functions. In: Weitz, D., Sander, L., and Mandelbrot, B. eds., 1988. Fractal Aspects of Materials: Disordered Systems. Materials Research Society Proceedings.

84. Sarkar, N., and Chaudhuri, B.B., 1992. An efficient approach to estimate fractal dimension of textural images. Pattern Recognit., 25(9), pp. 1035–1041. DOI:https://doi.org/10.1016/0031-3203(92)90066-R

85. Sarkar, N., and Chaudhuri, B.B., 1994. An efficient diff erential box-counting approach to compute fractal dimension of image. IEEE Trans. Syst. Man Cybern., 24(1), pp. 115–120. DOI:https://doi.org/10.1109/21.259692

86. Chen, W.-S., and Yuan, S.-Y., 2002. Some Fractal Dimension Estimate Algorithms and their Applications to One-Dimensional Biomedical Signals. Biomed. Eng. Appl. Basis Commun., 14, pp. 100–108. DOI:https://doi.org/10.4015/S1016237202000152

87. Khoa, T.Q.D., Ha, V.Q., and Toi, V.V., 2012. Higuchi Fractal Properties of Onset Epilepsy Electroencephalogram. Comput. Math. Methods Med., ID 461426, pp. 1–6. DOI:https://doi.org/10.1155/2012/461426

88. Sandau, K., and Kurz, H., 1997. Measuring fractal dimension and complexity–an alternative approach with an application. J. Microsc., 186(2), pp. 164–176. DOI:https://doi.org/10.1046/j.1365-2818.1997.1270685.x

89. Prigarin, S., Hahn, K., and Winkler, G., 2008. Comparative analysis of two numerical methods to measure Hausdorff dimension of the fractional Brownian motion. Numer. Anal. Appl., 1(2), pp. 163–178. DOI:https://doi.org/10.1134/S1995423908020079

90. Hall, P., and Wood, A., 1993. On the performance of box–counting estimators of fractal dimension. Biometrika, 80, pp. 246–252. DOI:https://doi.org/10.1093/biomet/80.1.246

91. Gneiting, T., and Schlather, M., 2004. Stochastic Models That Separate Fractal Dimension and the Hurst Effect. SIAM Rev., 46(2), pp. 269–282. DOI:https://doi.org/10.1137/S0036144501394387

92. Gneiting, T., Sevcikova, H., and Percival, D.B., 2012. Estimators of fractal dimension: assessing the roughness of time series and spatial data. Statist. Sci., 27, pp. 247—277. DOI:https://doi.org/10.1214/11-STS370

93. Tricot, C., Quiniou, J.F., Wehbi, D., Roques–Carmes, C., and Dubuc, B., 1988. Evaluation de la dimension fractale d’un graphe. 3. Revue Phys. Appl., 23, pp. 111–124. DOI:https://doi.org/10.1051/rphysap:01988002302011100

94. Bouligand, G., 1929. Sur la notion d’ordre de mesure d’un ensemble ferme. Bull. Sci. Math., 52, pp. 185–192.

95. Pilgrim, I., and Taylor, P.R., 2019. Fractal Analysis of Time-Series Data Sets: Methods and Challenges. Fractal Analysis. DOI:https://doi.org/10.5772/intechopen.81958

96. Dubuc, B., Quiniou, J.F., Roques-Carmes, C., Tricot, C., and Zucker, S.W., 1989. Evaluating the fractal dimension of profiles. Phys. Rev. A, 39, pp. 1500–1512. DOI:https://doi.org/10.1103/PhysRevA.39.1500

97. Dubovikov, M.M., Starchenko, N.V., and Dubovikov, M.S., 2004. Dimension of the minimal cover and fractal analysis of time series. Physica A, 339, pp. 591–608. DOI:https://doi.org/10.1016/j.physa.2004.03.025

98. Mantegna, R.N., and Stanley, H.E., 1995. Scaling Behavior in the Dynamics of Economic Index. Nature, 376, pp. 46–49. DOI:https://doi.org/10.1038/376046a0

99. Burlaga, L.F., and Klein, L.W., 1986. Fractal structure of the interplanetary magnetic field. J. Geophys. Res., 91(A1), pp. 347–350. DOI:https://doi.org/10.1029/JA091iA01p00347

100. Mandelbrot, B., 2010. Les Objets Fractals: Forme, Hasard et Dimension. Paris: Flammarion.

101. Farmer, J.D., Ott, E., and Yorke, J.A., 1983. Th e dimension of chaotic attractors. Physica D, 7(1-3), pp. 153-180. DOI: https://doi.org/10.1016/0167-2789(83)90125-2

102. Higuchi, T., 1988. Approach to an irregular time series on the basis of the fractal theory. Physica D, 31, pp. 277-283. DOI: https://doi.org/10.1016/0167-2789(88)90081-4

 

103. Liebovitch, L.S., 1998. Fractals and Chaos. Simplifi ed for the Life Sciences. Oxford: Oxford University Press.

104. Affi nito, M., Carrozzi, M., Accardo, A., and Bouquet, F., 1997. Use of the fractal dimension for the analysis of electroencephalographic time series. Biol. Cybern., 77(5), pp. 339-350. DOI: https://doi.org/10.1007/s004220050394

105. Schmittbuhl, J., Vilotte, J.-P., and Roux, S., 1995. Reliability of self-affi ne measurements. Phys. Rev. E, 51(1), pp. 131-147. DOI: https://doi.org/10.1103/PhysRevE.51.131

106. Klonowski, W., 2002. Chaotic dynamics applied to signal complexity in phase space and in time domain. Chaos Solit. Fractals, 14, pp. 1379-1387. DOI: https://doi.org/10.1016/S0960-0779(02)00056-5

107. Higuchi, T., 1990. Relationship between the fractal dimension and the power law index for a time series: A numerical investigation. Physica D, 46(2), pp. 254-264. DOI:
https://doi.org/10.1016/0167-2789(90)90039-R

108. Katz, M.J., 1988. Fractals and the analysis of waveforms. Comput. Biol. Med., 18(3), pp. 145-156. DOI: https://doi.org/10.1016/0010-4825(88)90041-8

109. Castiglioni, P., 2010. What is wrong in Katz's method? Comments on: "A note on fractal dimensions of biomedical waveforms". Comput. Biol. Med., 40(11-12), pp. 950-952. DOI: https://doi.org/10.1016/j.compbiomed.2010.10.001

110. Pradhan, N., and Narayana Dutt, D., 1993. Use of running fractal dimension for the analysis of changing patterns in electroencephalograms. Comput. Biol. Med., 23(5), pp. 381-388. DOI: https://doi.org/10.1016/0010-4825(93)90135-N

111. Acharya, R.U., Faust, O., Kannathala, N., Chua, T., and Laxminarayan, S., 2005. Non-linear analysis of EEG signals at various sleep stages. Comput. Methods Programs Biomed., 80, pp. 37-45. DOI: https://doi.org/10.1016/j.cmpb.2005.06.011

112. Petrosian, A., 1995. Kolmogorov complexity of fi nite sequences and recognition of diff erent preictal EEG patterns. In: Proc. Eighth IEEE Symposium on Computer-Based Medical Systems. Lubbock, Texas, USA. 9-10 June 1995. IEEE, 1995. P. 212-217. DOI: https://doi.org/10.1109/CBMS.1995.465426

113. Ezeiza, A., Lopez de Ipina, K., Hernandez, C., and Barroso, N., 2012. Enhancing the Feature Extraction Process for Automatic Speech Recognition with Fractal Dimensions. Cogn. Comput., 5(4), pp. 545-550. DOI: https://doi.org/10.1007/s12559-012-9165-0

114. Sevcik, C., 2006. On fractal dimension of waveforms. Chaos Solit. Fractals, 28, pp. 579-580. DOI:https://doi.org/10.1016/j.chaos.2005.07.003

115. Gnitecki, J., and Moussavi, Z., 2005. The fractality of lung sounds: A comparison of three waveform fractal dimension algorithms. Chaos Solit.Fractals, 26, pp. 1065-1072. DOI: https://doi.org/10.1016/j.chaos.2005.02.018

116. Kalauzi, A., Spasic, S., Culic, M., Grbic, G., and Martac, L. J., 2005. Consecutive Diff erences as a Method of Signal Fractal Analysis. Fractals, 13(04), pp. 283-292. DOI: https://doi.org/10.1142/S0218348X05002933

117. Kalauzi, A., Bojić, T., and Rakić, L., 2009. Extracting complexity waveforms from one-dimensional signals. Nonlinear Biomed. Phys., 3(1), article 8. DOI: https://doi.org/10.1186/1753-4631-3-8

118. Nakagawa, M., 1993. A Critical Exponent Method to Evaluate Fractal Dimensions of Self-Affi ne Data. J. Phys. Soc. Japan., 62(12), pp. 4233-4239. DOI: https://doi.org/10.1143/JPSJ.62.4233

119. Sabanal, S., and Nakagawa, M., 1996. Th e fractal properties of vocal sounds and their application in the speech recognition model. Chaos Solit. Fractals, 7(11), pp. 1825-1843. DOI: https://doi.org/10.1016/S0960-0779(96)00043-4

120. De Oliveira, L.P.L., Roque, W.L., and Custidio, R.F., 1999. Lund Sound Analysis with Time-Dependent Fractal Dimensions. Chaos Solit. Fractals, 10(9), pp. 1419-1423. DOI: https://doi.org/10.1016/S0960-0779(98)00101-5

121. Phinyomark, A., Phothisonothai, M., Suklaead, P., Phukpattaranont, P., and Limsakul, C., 2011. Fractal Analysis of Surface Electromyography (EMG) Signal for Identify Hand Movements Using Critical Exponent Analysis. Commun. Comput. Inf. Sci., pp. 703-713. DOI:https://doi.org/10.1007/978-3-642-22191-0_62

122. Bigerelle, M., and Iost, A., 1996. Calcul de la dimension fractale d'un profi l par la methode des autocorrelations moyennees normees (AMN). C.R. Acad. Sci. Paris, 323, Serie II b, pp. 669-674.

123. Maragos, P., and Sun, F.-K., 1993. Measuring the Fractal Dimension of Signals: Morphological Covers and Iterative Optimization. IEEE Trans. Signal Process., 41(1), pp. 108-121. DOI: https://doi.org/10.1109/TSP.1993.193131

124. Serra, J., 1982. Image Analysis and Mathematical Morphology. London-New York: Academic Press.

125. Maragos, P., and Potamianos, A., 1999. Fractal dimensions of speech sounds: Computation and application to automatic speech recognition. J. Acoust. Soc. Am., 105(3), pp. 1925-1932. DOI:https://doi.org/10.1121/1.426738

126. Kith, K., Sourina, O., Kulish, V., and Khoa, N.M., 2009. An algorithm for fractal dimension calculation based on Renyi entropy for short time signal analysis. In: 2009 7th Int. Conf. on Information, Communications and Signal Processing (ICICS). Macau Fisherman's Wharf, Macao. 8-10 Dec. 2009. P. 1-5. DOI: https://doi.org/10.1109/ICICS.2009.5397510

127. Peng, C.-K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L., 1994. Mosaic organization of DNA nucleotides. Phys Rev E, 49, pp. 1685-1689. DOI: https://doi.org/10.1103/PhysRevE.49.1685

128. Mandelbrot, B., 1985. Self-Affine Fractals and Fractal Dimension. Phys. Scr., 32(4), pp. 257-260. DOI:https://doi.org/10.1088/0031-8949/32/4/001

129. Peng, C.-K., Havlin, S., Stanley, H.E., and Goldberger, A.L., 1995. Quantifi cation of scaling Exponents and Crossover Phenomena in Nonstationary Heartbeat Time Series. Chaos Solit. Fractals, 5(1), pp. 82-87. DOI:https://doi.org/10.1063/1.166141

130. Telesca, L., and Macchiato, M., 2004. Time-scaling properties of the Umbria-Marche 1997-1998 seismic crisis, investigated by the detrended fluctuation analysis of interevent time series. Chaos Solit. Fractals, 19, pp. 377-385. DOI: https://doi.org/10.1016/S0960-0779(03)00050-X

131. Kantelhardt, J.W., Koscielny-Bunde, E., Rego, H.H.A., Havlin, S., and Bunde, A., 2001. Detecting long-range correlations with detrended fluctuation analysis. Physica A, 295, pp. 441-454. DOI: https://doi.org/10.1016/S0378-4371(01)00144-3

132. Buldyrev, S.V., Goldberger, A.L., Havlin, S., Mantegna, R.N., Matsa, M.E., Peng, C.-K., Simons, M., Stanley, H.E., 1995. Longrange correlation properties of coding and noncoding DNA sequences: GenBank analysis. Phys. Rev. E, 51(5), pp. 5084-5091. DOI: https://doi.org/10.1103/PhysRevE.51.5084

133. Bunde, A., Havlin, S., Kantelhardt, J. W., Penzel, T., Peter, J.-H. and Voigt, K., 2000. Correlated and Uncorrelated Regions in Heart-Rate Fluctuations during Sleep. Phys. Rev. Lett., 85(17), pp. 3736-3739. DOI: https://doi.org/10.1103/PhysRevLett.85.3736

134. Habib, A., Sorensen, J.P.R., Bloomfi eld, J.P., Muchan, K., Newell, A.J., and Butler, A.P., 2017. Temporal scaling phenomena in groundwater-floodplain systems using robust detrended fluctuation analysis. J. Hydrol., 549, pp. 715-730. DOI: https://doi.org/10.1016/j.jhydrol.2017.04.034

135. Tan, C.O., Cohen, M.A., Eckberg, D.L., and Taylor, J.A., 2009. Fractal properties of human heart period variability: physiological and methodological implications. J Physiol., 587(15), pp 3929-3941. DOI: https://doi.org/10.1113/jphysiol.2009.169219

136. Arsac, L.M., and Deschodt-Arsac, V., 2018. Detrended fl uctuation analysis in a simple spreadsheet as a tool for teaching fractal physiology. Adv. Physiol. Educ., 42, pp. 493-499. DOI: https://doi.org/10.1152/advan.00181.2017

137. Mandelbrot, B., and Wallis, J.R., 1969. Computer experiments with fractional Gaussian noises. Water Resour. Res., 5(1), pp. 228-241. DOI: https://doi.org/10.1029/WR005i001p00228

138. Riley, M.A., Bonnette, S., Kuznetsov, N., Wallot, S., Gao, J., 2012. A tutorial introduction to adaptive fractal analysis. Front. Physiol., 3. DOI: https://doi.org/10.3389/fphys.2012.00371

139. Gao, J.B., Sultan, H., Hu, J., and Tung, W.W., 2010. Denoising nonlinear time series by adaptive fi ltering and wavelet shrinkage: a comparison. IEEE Signal Process. Lett., 17, pp. 237-240. DOI:https://doi.org/10.1109/LSP.2009.2037773

140. Vandewalle, N., and Ausloos, M., 1998. Crossing of two mobile averages: A method for measuring the roughness exponent. Phys. Rev. E, 58(5), pp. 6832-6834. DOI: https://doi.org/10.1103/PhysRevE.58.6832

141. Peltier, R.F., and Levy-Vehel, J., 1994. A new method for estimating the parameter of fractional Brownian motion. INRIA Research Report, No. 2396.

142. Hardy, H.H., and Beier, R.A., 1994. Fractals in Reservoir Engineering. Singapore, New Jersey, London, Hong Kong: World Scientific. DOI:https://doi.org/10.1142/2574

143. Taqqu, M.S., Teverovsky, V., and Willinger, W., 1995. Estimators for Long-Range Dependence: An Empirical Study. Fractals, 03(04), pp. 785-798. DOI: https://doi.org/10.1142/S0218348X95000692

144. Geweke, J., and Porter-Hudak, S., 1983. The estimation and application of long memory time series models. J. Time Ser. Anal., 4, pp. 221-238. DOI:https://doi.org/10.1111/j.1467-9892.1983.tb00371.x

145. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.-Ch., Tung, Ch.Ch., and Liu, H.H., 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. A: Math. Phys. Eng. Sci., 454(1971), pp. 903-995. DOI:https://doi.org/10.1098/rspa.1998.0193

146. Bassingthwaighte, J.B., 1988. Physiological heterogeneity: fractals link determinism and randomness in structures and function. News Physiol. Sci., 3, pp. 5-10. DOI: https://doi.org/10.1152/physiologyonline.1988.3.1.5

147. Cannon, M.J., Percival, D.B., Caccia, D.C., Raymond, G.M., and Bassingthwaighte, J.B., 1997. Evaluating scaled windowed variance methods for estimating the Hurst coefficient of time series. Physica A, 241(3-4), pp. 606-626. DOI:
https://doi.org/10.1016/S0378-4371(97)00252-5

148. Roueff, F., and Levy-Vehel, J., 1998. A Regularization Approach to Fractional Dimension Estimation. In: Novak, M.M., 1998. Fractals 98, Oct 1998, Valleta, Malta. World Scientific. <inria-00593254>

149. Theiler, J., 1990. Estimating Fractal Dimension. J. Opt. Soc. Am. A., 7(6), pp. 1055-1073. DOI: https://doi.org/10.1364/JOSAA.7.001055

150. Farmer, J.D., Ott, E., and Yorke, J.A., 1983. The dimension of chaotic attractors. Physica D, 7(1-3), pp. 153-180. DOI: 10.1016/0167-2789(83)90125-2.
https://doi.org/10.1016/0167-2789(83)90125-2

151. Stelter, P., and Pfingsten, T., 1991. Calculation of the Fractal Dimension via the Correlation Integral. Chaos Solit. Fractals, 1(3), pp. 273-280. DOI: https://doi.org/10.1016/0960-0779(91)90036-9

152. Theiler, J., 1990. Estimating the Fractal Dimension of Chaotic Time Series. Linc. Lab. J., 3(1), pp. 63-86.

153. Grassberger, P., and Procaccia, I., 1983. Measuring the strangeness of strange attractors. Physica D, 9(1-2), pp. 189-208. DOI: https://doi.org/10.1016/0167-2789(83)90298-1

154. Grassberger, P., 1983. Generalized dimensions of strange attractors. Phys. Lett. A., 97(6), pp. 227-230. DOI: https://doi.org/10.1016/0375-9601(83)90753-3

155. Hunt, F., and Sullivan, F., 1986. Effi cient Algorithms for Computing Fractal Dimensions. In: G. Mayer-Kress, ed., 1986. Dimensions and Entropies in Chaotic Systems. P. 74-81. DOI: https://doi.org/10.1007/978-3-642-71001-8_10

156. Giorgilli, A., Casati, D., Sironi, L., and Galgani, L., 1986. An effi cient procedure to compute fractal dimensions by box counting. Phys. Lett. A, 115(5), pp. 202-206. DOI: https://doi.org/10.1016/0375-9601(86)90465-2

157. Theiler, J., 1987. Effi cient algorithm for estimating the correlation dimension from a set of discrete points. Phys. Rev. A, 36(9), pp. 4456-4462. DOI: https://doi.org/10.1103/PhysRevA.36.4456

158. Liebovitch, L.S., and Toth, T., 1989. A fast algorithm to determine fractal dimensions by box counting. Phys. Lett. A, 141(8-9), pp. 386-390. DOI: https://doi.org/10.1016/0375-9601(89)90854-2

159. Pitsikalis, V., and Maragos, P., 2009. Analysis and classifi cation of speech signals by generalized fractal dimension features. Speech Commun., 51(12), pp. 1206-1223. DOI: https://doi.org/10.1016/j.specom.2009.06.005

160. Lo, A.W., 1991. Long-Term Memory in Stock Market Prices. Econometrica, 59(5), pp. 1279-1313. DOI: https://doi.org/10.2307/2938368

161. Jiang, Z.-Q., Yang, Y.-H., Wang, G.-J., and Zhou, W.-X., 2017. Joint multifractal analysis based on wavelet leaders. Front. Phys., 12(6). DOI: https://doi.org/10.1007/s11467-017-0674-x

162. Krakovska, H., and Krakovska, A., 2016. Fractal Dimension of Self-Affi ne Signals: Four Methods of Estimation. In: XXXVI Dynamics Days Europe. Corfu, Greece, 6-10 June 2016. Available at: http://arxiv.org/abs/1611.06190v1

163. Voss, R., 1988. Fractals in nature: from characterization to simulation. In: Peitgen, H., Saupe, D. eds., 1988. The Science of Fractal Images. New York: Springer-Verlag. DOI: https://doi.org/10.1007/978-1-4612-3784-6_1

164. Kirichenko, L.O., and Chalaya, L.E., 2014. Complex Approach to Investigation of Fractal Time Series. Int. J. Inf. Technol. Knowl., 8(1), pp. 22-28 (in Russian).

165. Kirichenko, L.O., Kobitskaya, Yu.A., and Dyomina, N.A., 2015. Analysis and Recognition of the Signal Realizations Having Fractal Properties. Bionika Intellekta, 84(1), pp. 49-55 (in Russian).

166. Chernogor, L.F., Lazorenko, O.V., and Onishchenko, A.A., 2018. Fractal Analysis of the Gravitational Waves as a Unique Ultra-Wideband Process. In: Proc. 9th Int. Conf. Ultrawideband and Ultrashort Impulse Signals. Odessa, Ukraine, 4-7 Sept., 2018. Odessa, 2018. P. 34-39. DOI: https://doi.org/10.1109/UWBUSIS.2018.8519979

167. Onishchenko, A., Chernogor, L, and Lazorenko, O., 2019. Dynamical Fractal Analysis of the Acoustic Ultra-Wideband Signal Caused by the Chelyabinsk Meteoroid. Eskişehir Technical Univ. J. of Sci. and Tech. A - Appl. Sci. and Eng., 20, pp. 188-192. DOI: https://doi.org/10.18038/estubtda.655702

168. Maity, A.K., Pratihar, R., Mitra, A., Dey, S., Agrawal, V., Sanyal, S., Banerjee, A., Sengupta, R., Ghosh, D., 2015. Multifractal Detrended Fluctuation Analysis of alpha and theta EEG rhythms with musical stimuli. Chaos Solit. Fractals, 81, pp. 52-67. DOI: https://doi.org/10.1016/j.chaos.2015.08.016

169. Arneodo, A., Grasseau, G., and Holschneider, M., 1988. Wavelet transform of multifractals. Phys. Rev. Lett., 61, pp. 2281-2284. DOI: https://doi.org/10.1103/PhysRevLett.61.2281

170. Muzy, J.F., Bacry, E., and Arneodo, A., 1991. Wavelets and multifractal formalism for singular signals: Application to turbulence data. Phys. Rev. Lett., 67(25), pp. 3515-3518. DOI: https://doi.org/10.1103/PhysRevLett.67.3515

171. Arneodo, A., Bacry, E., and Muzy, J.F., 1995. The thermodynamics of fractals revisited with wavelets. Physica A, 213, pp. 232-275. DOI: https://doi.org/10.1016/0378-4371(94)00163-N

172. Muzy, J.F., Bacry, E., and Arneodo, A., 1993. Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. Phys. Rev. E, 47(2), pp. 875-884. DOI: 10.1103/PhysRevE.47.875. DOI: https://doi.org/10.1103/PhysRevE.47.875

173. Quadfeul, S.-A. ed., 2012. Fractal Analysis and Chaos in Geosciences. Rijeka, Croatia: InTech Press.

174. Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., and Stanley, H.E., 2002. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A, 316(1-4), pp. 87-114. DOI: https://doi.org/10.1016/S0378-4371(02)01383-3

175. Jaffard, S., 1997. Multifractal Formalism for Functions. Part I: Results Valid for All Functions. SIAM J. Math. Anal., 28(4), pp. 944-970. DOI: https://doi.org/10.1137/S0036141095282991

176. Arneodo, A., Audit, B., Kestener, P., and Roux, S., 2007. Multifractal Formalism Based on the Continuous Wavelet Transform. Scholarpedia, 3, pp. 1-20. DOI: https://doi.org/10.4249/scholarpedia.4103

177. Jizba, P., Korbel, J., 2015. Applications of Multifractal Diff usion Entropy Analysis to Daily and Intraday Financial Time Series. In: Sanayei, A., Rossler, O.E., Zelinka, I. eds. ISCS 2014: Interdisciplinary Symposium on Complex Systems. Emergence, Complexity and Computation. Vol. 14. P. 333-342. Springer, Cham. DOI: https://doi.org/10.1007/978-3-319-10759-2_34

178. Galaska, R., Makowiec, D., Dudkowska, A., Koprowski, A., Chlebus, K., Wdowczyk-Szulc, J., and Rynkiewicz, A., 2008. Comparison of Wavelet Transform Modulus Maxima and Multifractal Detrended Fluctuation Analysis of Heart Rate in Patients with Systolic Dysfunction of Left Ventricle. Ann. Noninvasive Electrocardiol., 13(2), pp. 155-164. DOI: https://doi.org/10.1111/j.1542-474X.2008.00215.x

179. Weiss, B., Clemens, Z., Bodizs, R., Vago, Z., and Halasz, P., 2009. Spatio-temporal analysis of monofractal and multifractal properties of the human sleep EEG. J. Neurosci. Methods, 185, pp. 116-124. DOI: https://doi.org/10.1016/j.jneumeth.2009.07.027

180. Jaff ard, S., Lashermes, B., Abry, P., 2006. Wavelet Leaders in Multifractal Analysis. In: Qian, T., Vai, M.I., Xu, Y. eds., 2006. Wavelet Analysis and Applications. Applied and Numerical Harmonic Analysis. Birkhauser Basel. P. 201-246. DOI: https://doi.org/10.1007/978-3-7643-7778-6_17

181. Kantelhardt, J.W., Rybski, D., Zschiegner, S.A., Braun, P., Koscielny-Bunde, E., Livina, V., Havlin, S., Bunde, A., 2003. Multifractality of river runoff and precipitation: comparison of fl uctuation analysis and wavelet methods. Physica A, 330(1-2), pp. 240-245. DOI: https://doi.org/10.1016/j.physa.2003.08.019

182. Telesca, L., Lapenna, V., Macchiato, M., 2004. Mono- and multi-fractal investigation of scaling properties in temporal patterns of seismic sequences. Chaos Solit. Fractals, 19, pp. 1-15. DOI: https://doi.org/10.1016/S0960-0779(03)00188-7

183. Shimizu, Y., Th urner, S., and Ehrenberger, K., 2002. Multifractal Spectra as a Measure of Complexity in Human Posture. Fractals, 10(01), pp. 103-116. DOI:
https://doi.org/10.1142/S0218348X02001130

184. Ihlen, E.A.F., 2012. Introduction to multifractal detrended fl uctuation analysis in Matlab. Front. Physiol., 3, article 141. DOI: ttps://doi.org/10.3389/fphys.2012.00141

185. Dimri, V.P., 2016. Fractal Solutions for Understanding Complex Systems in Earth Sciences. Springer Int. Publ. DOI: https://doi.org/10.1007/978-3-319-24675-8

186. Barabasi, A.-L., and Vicsek, T., 1991. Multifractality of self-affine fractals. Phys. Rev. A, 44(4), pp. 2730-2733. DOI: https://doi.org/10.1103/PhysRevA.44.2730

187. Di Matteo, T., Aste, T., and Dacorogna, M., 2003. Scaling behaviors in diff erently developed markets. Physica A, 324(1), pp. 183-188. DOI: https://doi.org/10.1016/S0378-4371(02)01996-9

188. Di Matteo, T., 2007. Multi-scaling in fi nance. Quant. Finance, 7(1), pp. 21-36. DOI:https://doi.org/10.1080/14697680600969727

189. Flandrin, P. ed., 1999. Time-Frequency/Time-Scale Analysis. San Diego: Academic Press.

190. Benedetto, J.J., Byrnes, J.S., Byrnes, J.L., Hargreaves, K.A., and Berry, K., 1994. Wavelets and Their Applications. Springer Scince+Business Media, B.V.

191. Mandelbrot, B.B., 1999. Multifractals and 1/f Noise. wild self-Affinity in Physics (1963-1976). New York: Springer-Verlag.

192. Bertrand, J., and Bertrand, P., 1988. Time-frequency representations of broadband signals. In: 1988 Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP-88). New York, NY, 11-14 April 1988, pp. 2196-2199.

193. Rioul, O., and Flandrin, P., 1992. Time-scale energy distributions-A general class extending wavelet transforms. IEEE Trans. Signal Process., 40(7), pp. 1746-1757. DOI: https://doi.org/10.1109/78.143446

194. Muniandy, S.V., and Lim, S.C., 2001. Modeling of locally self-similar processes using multifractional Brownian motion of Riemann-Liouville type. Phys. Rev. E, 63(4), pp. 46-104. DOI: https://doi.org/10.1103/PhysRevE.63.046104

195. Morales, R., Di Matteo, T., Gramatica, R., and Aste, T., 2012. Dynamical generalized Hurst exponent as a tool to monitor unstable periods in fi nancial time series. Physica A, 391(11), pp. 3180-3189. DOI: https://doi.org/10.1016/j.physa.2012.01.004

196. Huang, J., Shang, P., and Zhao, X., 2012. Multifractal diff usion entropy analysis on stock volatility in fi nancial markets. Physica A, 391(22), pp. 5739-5745. DOI: https://doi.org/10.1016/j.physa.2012.06.039

197. Broniatowski, M., and Mignot, P., 2001. A self-adaptive technique for the estimation of the multifractal spectrum. Stat. Probab. Lett., 54(2), pp. 125-135. DOI: https://doi.org/10.1016/S0167-7152(00)00210-8

198. Turcotte, D.L., 2004. Th e relationship of fractals in geophysics to "the new science." Chaos Solit. Fractals, 19(2), pp. 255-258. DOI: https://doi.org/10.1016/S0960-0779(03)00039-0

199. Vicsek, T., 1990. Mass multifractals. Physica A, 168(1), pp. 490-497. DOI: https://doi.org/10.1016/0378-4371(90)90401-D

200. Gu, G.-F., and Zhou, W.-X., 2010. Detrending moving average algorithm for multifractals. Phys. Rev. E, 82(1). DOI: https://doi.org/10.1103/PhysRevE.82.011136

201. Vandewalle, N., Ausloos, M., 1998. Crossing of two mobile averages: A method for measuring the roughness exponent. Phys. Rev. E., 58(5), pp. 6832-6834. DOI: https://doi.org/10.1103/PhysRevE.58.6832

202. Ghosh, D., Dutta, S., and Chakraborty, S., 2014. Multifractal detrended cross-correlation analysis for epileptic patient in seizure and seizure free status. Chaos Solit. Fractals, 67, pp. 1-10. DOI: https://doi.org/10.1016/j.chaos.2014.06.010

203. Barnsley, M.F., 1988. Fractals Everywhere. Boston: Academic Press Publ.


Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)