OMNIDIRECTIONAL MILLIMETER-WAVELENGTH ANTENNAS BASED ON SEGMENTAL DIELECTRIC RESONATORS WHICH SUPPORT WHISPERING GALLERY MODES
Abstract
Subject and Purpose. The subject of investigation is a new class of resonant-type transmit antennas intended for operation at millimeter wavelengths. The model under consideration is based on the idea of diffractional re-emission of waves into the azimuthal direction by local inhomo-geneities of the basically cylindrical structure. The purpose of the work is to justify the possibility of using such an effect for creating antennas with a circular radiation pattern, and to suggest an appropriate design.
Methods and Methodology. The research program included both experimental work and application of advanced computer simulation techniques. The modern methods employed have allowed studying electromagnetic field distributions both in internal domains of the dielectric resonators and in the far-field zones of the resonator-based antennas.
Results. Design solutions have been proposed for resonant-type, omnidirectional transmit antennas to operate in the millimeter waveband. The characteristic parameters are sizes of their radiating elements, specifically the segmental members equidistantly disposed along the azimuthal direction on the cylindrical surfaces of dielectric disks. The radiational characteristics of such antennas, with segments of either localized or extended dimension (compared with the operating wavelength) have been investigated. Electric field intensity distributions in the far-field region and the respective gain factors of the antennas have been studied.
Conclusions. The antennas based on segmental dielectric resonators have been shown to form multi-lobe radiation patterns covering the angular sector of 0–360along the azimuth. By placing the local segments at the resonant field’s antinodes (of the operating mode) it is possible to achieve relatively high values of the gain, reaching 15.5 dB at the lobe maxima.
Keywords: segmental dielectric resonators, millimeter-wave omnidirectional antennas, whispering gallery modes.
REFERENCES
1. Rayleigh, J.W. Strutt, 1896. On the Whispering Galleries. In: Theory of Sound. London: Macmillan Publ. Vol. 2, pp. 127–129.
2. Rayleigh, J.W. Strutt, 1910. Th e Problem of the Whispering Gallery. Phil. Mag., 20, pp. 1001–1004. DOI:https://doi.org/10.1080/14786441008636993
3. Lin, G., and Chembo, Ya.K., 2016. Opto-acoustic phenomena in whispering gallery mode resonators. Int. J. Optomechatronics, 10(1), pp. 32–39. DOI:https://doi.org/10.1080/15599612.2015.1124476
4. Ye, Ming-Yong, Shen, Mei-Xia, Lin, Xiu-Min, 2016. Ringing phenomenon-based whispering-gallery-mode sensing. Sci. Rep., 6(1), pp. 1–7. DOI:https://doi.org/10.1038/srep19597
5. Vedrenne, C., Arnaud, J., 1982. Whispering-Gallery modes in dielectric resonators. IEE proc., H Microw. Opt. Antennas, 129(4),pp. 183–187. DOI:https://doi.org/10.1049/ip-h-1.1982.0037
6. Annino, G., Cassettari, M., Longo, I., Martinelli, M., 1997. Whispering gallery modes in a dielectric resonator: characterization atmillimeter wavelength. IEEE Trans. Microwave Theory Tech., 45(11), pp. 2025–2034. DOI:https://doi.org/10.1109/22.644226
7. Annino, G., Cassettari, M., Martinelli, M., 2002. Study on planar whispering gallery dielectric resonators. I. General properties.Int. J. Infrared Millimeter Waves, 23, pp. 597–615. DOI:https://doi.org/10.1023/A:1015709927809
8. Annino, G., Cassettari, M., Martinelli, M., 2002. Study on planar whispering gallery dielectric resonators. II. A multiple-banddevice. Int. J. Infrared Millimeter Waves, 23, pp. 617–634. DOI:https://doi.org/10.1023/A:1015761911879
9. Wait, J.R., 1967. Electromagnetic Whispering Gallery Modes in a Dielectric Rod. Radio Sci., 2, pp. 1005–1017. DOI:https://doi.org/10.1002/rds1967291005
10. Il’chenko, M.E., Vziatyshev, V.F., Gassanov, L.G., 1989. Dielectric resonators. Moscow: Radio i svyaz’ Publ. (in Russian).
11. Kirichenko, A.Ya., Prokopenko, Yu.V., Filippov, Yu.F., Cherpak, N.T., 2008. Quasioptical solid-state resonators. Kiev: NaukovaDumka Publ. (in Russian).
12. Lee, J., Pinel, S., Laskar, J., and Tentzeris, M.M., 2007. Design and Development of Advanced Cavity-Based Dual-Mode Filters UsingLow-Temperature Co-Fired Ceramic Technology for V-Band Gigabit Wireless Systems. IEEE Trans. Microwave Theory Tech., 55(9), pp. 1869–1879. DOI:https://doi.org/10.1109/TMTT.2007.904328
13. Jiao, H., Guillon, P., Bermudez, L.A., Auxemery, P., 1987. Whispering-gallery mode of dielectric structures: application to millimeterwave band stop filters. IEEE Trans. Microwave Theory Tech., 35(12), pp. 1169–1175. DOI:https://doi.org/10.1109/TMTT.1987.1133834
14. Dick, G.J., Saunders, J., 1990. Measurement and analysis of a microwave oscillator stabilized by a sapphire dielectric ring resonatorfor ultra-low noise. IEEE Trans. Ultrason. Ferroelectr. Freq. Control., 37(5), pp. 339–346. DOI:https://doi.org/10.1109/58.105239
15. Kharkovsky, S., Kirichenko, A., Kogut, A., 1996. Solid-state oscillators with whispering-gallery-mode dielectric resonators. Microw. Opt. Technol. Lett., 12(4), pp. 210–213. DOI:https://doi.org/10.1002/(SICI)1098-2760(199607)12:4<210::AID-MOP9>3.0.CO;2-J
16. Kogut, A.E., Eremenko, Z.E., Kuzmichev, I.K., Dolia, R.S., Islam, M.T., 2019.Power Summation of the Gunn-Diodes in the Ultra-Th in Planar Dielectric Resonator. In: 2019 49th European Microwave Conference (EuMC). Paris, France, 01–03 Oct. 2019,pp. 336–339. IEEE Publ. DOI:https://doi.org/10.23919/EuMC.2019.8910948
17. Krupka, J.A., Tobar, M.E., Hartnett, J.G., Cros D., Le Floch, J.-M., 2005. Extremely high-Q factor dielectric resonators formillimeter-wave applications. IEEE Trans. Microwave Theory Tech., 53(2), pp. 702–712. DOI:https://doi.org/10.1109/TMTT.2004.840572
18. Eremenko, Z., Kogut, A., Shubnyi, A., Dolia, R., 2019. Comparison of High Loss Liquid Dielectric Properties Measurement UsingWaveguide and Resonator Methods. In: 2019 European Microwave Conference in Central Europe (EuMCE). Prague, Czech Republic,13–15 May 2019. IEEE Publ.
19. Popov, E. ed., 2012. Gratings: Theory and Numeric Applications. AMU (PUP).
20. Aveline, D.C., Baumgartel, L.M., Lin, G., and Yu, N., 2013. Whispering gallery mode resonators augmented with engraved diffractiongratings. Opt. Lett., 38(3), pp. 284–286. DOI:https://doi.org/10.1364/OL.38.000284
21. Huy, K.P., Morand, A., and Benech, P., 2005. Modelization of the Whispering Gallery Mode in Microgear Resonators Using theFloque–Bloch Formalism. IEEE J. Quantum Electron., 41(3), pp. 357–365. DOI:https://doi.org/10.1109/JQE.2004.841498
22. Nozaki, K., Nakagawa, A., Sano, D., and Baba, T., 2003. Ultralow Th reshold and Single-Mode Lasing in Microgear Lasers and ItsFusion With Quasi-Periodic Photonic Crystals. IEEE J. Sel. Top. Quantum Electron., 9(5), pp. 1355–1360. DOI:https://doi.org/10.1109/JSTQE.2003.819465
Full Text:
PDFCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)