EIGEN-OSCILLATIONS OF PLANAR-CHIRAL BILAYER OBJECTS GIVE RISE TO ARTIFICIAL OPTICAL ACTIVITY

DOI: https://doi.org/10.15407/rpra29.01.015

A. O. Kirilenko, S. O. Steshenko, Y. M. Ostryzhnyi, V. M. Derkach

Abstract


Subject and Purpose. The research focuses on how the resonance frequencies, the Q-factor of resonances, and the polarization plane rotation ability are influenced by the topology of individual components of a planar-chiral double-layer object consisting of a pair of conjugated irises having rectangular slots and accommodated in a circular waveguide.

Methods and Methodology. All the numerical results are obtained by the mode-matching technique (MMT) and the transverse resonance method on the basis of our own proprietary MWD-03 software package.

Results. By the waveguide example, it has been shown that the internal structure of individual components and dihedral symmetry of the conjugated bilayer allow all the conclusions of the spectral theory (theory of eigen-oscillations) to be carried over to all the objects of the type. On the other hand, these objects behave as symmetric two-port waveguide components with conventionally "symmetric" and "antisymmetric" eigen-oscillations. The mutual coupling of these eigen-oscillations depends on the bilayer parameters. Where the frequencies of these eigen-oscillations are close enough, the polarization plane rotation and the transmission bandwidth reach their highest. It has been demonstrated that as a slot number increases, the resonance frequency decreases. The theoretical results have been confirmed by the measurements at the X range of frequencies for pairs of conjugated irises with various numbers of rectangular slots.

Conclusions. A pair of conjugated chiral irises can rotate the polarization plane. The iris topology, iris spacing, and the mutual rotation angle alter resonance frequencies. The resonance frequencies can be reduced by increasing the rectangular slot length and/or slot number. Even though they have not longitudinal symmetry, such objects have properties of two-port waveguide components. In particular, the phase shift of their reflection and transmission coefficients is modulo 90°. Besides, a possibility exists to divide eigen-oscillations into conventionally "symmetric" and "antisymmetric" based on the proximity of their fields to those whose type of symmetry is known before- hand. This makes it possible to approximate the reflection and transmission coefficients through corresponding eigenfrequencies.

Keywords: eigen-oscillations, bilayer objects, 3D-chirality, artificial optical activity, dihedral symmetry, planar-chiral irises, polarization converters,

Manuscript submitted 04.12.2023

Radio phys. radio astron. 2024, 29(1): 015-025

REFERENCES

1. Rogacheva, A. V., Fedotov, V. A., Schwanecke, A. S., and Zheludev, N. I., 2006. Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure. Phys. Rev. Lett., 97(17), id. 177401. DOI: https://doi.org/10.1103/PhysRevLett.97.177401

2. Zhao, R., Zhang, L., Zhou, J., Koschny, Th., and Soukoulis, C. M., 2011. Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index. Phys. Rev. B, 83(3), id. 035105. DOI: https://doi.org/10.1103/PhysRevB.83.035105

 3. Song, K., Ding, C., Su, Z., Liu, Y., Luo, C., Zhao, X., Bhattarai, K., and Zhou, J., 2016. Planar composite chiral metamaterial with broadband dispersionless polarization rotation and high transmission. J. Appl. Phys., 120(24), id. 245102. DOI: https://doi.org/10.1063/1.4972977

4. Zarifi, D., Soleimani, M., and Nayyeri, V., 2012. A Novel Dual-Band Chiral Metamaterial Structure with Giant Optical Activity and Negative Refractive Index. J. Electromagn. Waves Appl., 26(2—3), pp. 251—263. DOI: https://doi.org/10.1163/156939312800030767

5. Kirilenko, A. A., Steshenko, S. O., Derkach, V. N., Prikolotin, S. A., Kulik, D. Y., Prosvirnin, S. L., and Mospan, L. P., 2017. Rotation of the polarization plane by double-layer planar-chiral structures. Review of the results of theoretical and experimental studies. Radioelectron. Commun. Syst., 60(5), pp. 193—205. DOI: https://doi.org/10.3103/S0735272717050016

6. Kirilenko, A., Kolmakova, N., Prikolotin, S., and Perov, A., 2013. Simple example of polarization plane rotation by the fringing fields interaction. In: Proc. EuMW, 6—10 Oct. 2013, Nuremberg, Germany. IEEE, 2013, pp. 936—938.

7. Kirilenko, A. A., Steshenko, S. O., Derkach, V. N., Ostrizhnyi, Y. M., and Mospan, L. P., 2020. Tunable polarization rotator on a pair of grooved flanges. J. Electromagn. Waves Appl., 34(17), pp. 2304—2316. DOI: https://doi.org/10.1080/09205071.2020.1812442

8. Giloan, M., Gutt, R., and Saplacan, G., 2015. Optical chiral metamaterial based on meta-atoms with three-fold rotational symme- try arranged in hexagonal lattice. J. Opt., 17(8), id. 085102. DOI: https://doi.org/10.1088/2040-8978/17/8/085102

9. Bai, B., Svirko, Y., Turunen, J., and Vallius, T., 2007. Optical activity in planar chiral metamaterials: Theoretical study. Phys. Rev. A., 76(2), id. 023811. DOI: https://doi.org/10.1103/PhysRevA.76.023811

10. Kirilenko, A.A., Steshenko, S.O., Derkach, V.N., and Ostryzhnyi, Y.M., 2019. A tunable compact polarizer in a circular waveguide. IEEE Trans. Microw. Theory Tech., 67(2), pp. 592—596. DOI: https://doi.org/10.1109/TMTT.2018.2881089

11. MacPhie, R.H., and Wu, K.L., 1995. Scattering at the junction of a rectangular waveguide and a larger circular waveguide. IEEE Trans. Microw. Theory Tech., 43(9), pp. 2041—2045. DOI: https://doi.org/10.1109/22.414538

12. Kirilenko, A.A., Steshenko, S., and Ostryzhnyi, Y., 2020. Topology of a Planar-chiral Iris as a Factor in Controlling the "Optical Ac- tivity" of a Bilayer Object. In: 2020 IEEE Ukrainian Microwave Week (IEEE UkrMW): proc., 21—25 Sept. 2020, Kharkiv, Ukraine, 2020, pp. 555—558. DOI: https://doi.org/10.1109/UkrMW49653.2020.9252669

13. Kolmakova, N.G., Perov, A.O., Senkevich, S.L., and Kirilenko, A.A., 2011. Abnormal propagation of EMW through below cutoff holes and intrinsic oscillations of waveguide objects and periodic structures. Radioelectron. Commun. Syst., 54(3), pp. 115—123. DOI: https://doi.org/10.3103/S0735272711030010

14. Kirilenko, A.A., and Perov, A.O., 2008. On the common nature of the enhanced and resonance transmission through the period- ical set of holes. IEEE Trans. Antennas Propag., 56(10), pp. 3210—3216. DOI: https://doi.org/10.1109/TAP.2008.929437

15. Kirilenko, A.A., Steshenko, S.O., Derkach, V.N., and Ostrizhnyi, Y.M., 2019. Comparative analysis of tunable compact rotators. J. Electromagn. Waves Appl., 33(3), pp. 304—319. DOI: https://doi.org/10.1080/09205071.2018.1550443

16. Mackay, A., 1989. Proof of polarization independence and nonexistence of crosspolar terms for targets presenting with special reference to rotational symmetry frequency-selective surfaces. Electron. Lett., 25(24), pp. 1624—1625. DOI: https://doi.org/10.1049/el:19891088

17. Kirilenko, A.A., and Tysik, B.G., 1993. Connection of S-matrix of Waveguide and Periodical Structures with Complex Frequency Spectrum. Electromagnetics, 13(3), pp. 301—318. DOI: https://doi.org/10.1080/02726349308908352

18. Melezhik, P.N., Poyedinchuk, A.Y., Tuchkin, Y.A., and Shestopalov, V.P., 1988. About analytical origins of eigenmode coupling. Sov. Phys. Dokl., 300(6), pp. 1356—1359.

19. Yakovlev, A.B., and Hanson, G.W., 1998. Analysis of mode coupling on guided-wave structures using Morse critical points. IEEE Trans. Microw. Theory Tech., 46(7), pp. 966—974. DOI: https://doi.org/10.1109/22.701450

20. Kolmakova, N., Prikolotin, S., Perov, A., Derkach, V., Kirilenko, A., 2016. Polarization plane rotation by arbitrary angle using D4 symmetrical structures. IEEE Trans. Microw. Theory Tech., 64(2), pp. 429—436. DOI: https://doi.org/10.1109/TMTT.2015.2509966


Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)