FRACTAL RADIOPHYSICS. Part 3. FRACTIONAL CALCULUS IN ELECTRODYNAMICS
Abstract
Subject and Purpose. At the beginning of the 21st century, a fundamentally new scientific direction was formed, currently known as fractal radiophysics. The present work is an overview of the principal theoretical and practical ideas concerning "fractalization" in radio physics. The purpose is a systematic presentation of the main practical results suitable for application of the fractional calculus in modern theoretical radiophysics.
Methods and Methodology. The basic theoretical principles of fractional calculus are outlined in a structured form. Results of applying fractional calculus methods in electrodynamics are systematized. Essential features, advantages and disadvantages of the technique are demonstrated and the problems still remaining discussed.
Results. The basics of fractional (or fractal) calculus have been considered with emphasis on practical application to problems of radiophysics. A variety of approaches to constructing fractional integrals and Riemann–Liouville, etc. fractional derivatives have been presented. Using the Newton-Leibnitz formula and fundamental theorems of fractional calculus, principles of generalization of the classic vector calculus to fractal problems have been discussed, suggesting the examples of fractional vector-differential and vector-integral operators, Green’s and Stokes’ fractional formulas, etc. With the use of Gauss’s fractional formula the basics of fractal electrodynamics are expounded. Some different types of fractal Maxwellian equations has been induced and analyzed. Also, the main approaches to solving radio wave propagation problems in fractal media are discussed.
Conclusions. As a practical example of applying fractals in modern theoretical radiophysics, results have been presented of the use of fractional calculus in electrodynamics. These results signify appearance of a fundamentally new direction in radiophysics, namely fractal electrodynamics.
Keywords: fracta, fractional calculus, fractal electrodynamics, fractal medium, fractal electronics, fractal process, fractal characteristics
Manuscript submitted 12.09.2023
Radio phys. radio astron. 2024, 29(1): 046-067
REFERENCES
1. Lazorenko, O. V., and Chernogor, L. F., 2020. Fractal Radio Physics. 1. Theoretical Bases. Radio Phys. Radio Astron., 25(1), pp. 3—7 (in Russian). DOI: https://doi.org/10.15407/rpra25.01.003
2. Lazorenko, O. V., and Chernogor, L. F., 2023. Fractal Radio Physics. 2. Fractal and Multifractal Analyses of Signals and Processes. Radio Phys. Radio Astron. 28(1), pp. 5—70 (in Ukrainian). DOI: https://doi.org/10.15407/rpra28.01.005
3. Gorobets, Yu. I., Kuchko, A. M., and Vavilova, I. B., 2008. Fractal Geometry in Natural Science. Textbook. Kyiv, Ukraine: Naukova Dumka Publ. (in Ukrainian).
4. Tarasov, V. E., 2011. Fractional Dynamics. Applications of Fractal Calculus to Dynamics of Particles, Fields and Media. New York, USA: Springer.
5. Hibschweiler, R., and Macgregor, T.H., 2006. Fractional Cauchy Transforms. Boca Raton: Chapman &Hall/CRC. DOI: https://doi.org/10.1201/9781420034875
6. Saichev, A.I., and WoyczynskI, W.A., 1997. Distributions in the Physical and Engineering Sciences: Distributional and Fractal Calculus, Integral Transforms and Wavelets. Boston: Birkhäuser.
7. Gil’mutdinov, A.K., Ushakov, P.A., and El-Kharazi, R., 2017. Fractal Elements and their Applications. Cham, Switzerland: Springer Int. Publ.
8. Nakayama, T., and Yakubo, K., 2010. Fractal Concepts in Condensed Matter Physics. Berlin, Heidelberg: Springer-Verlag.
9. Tarasov, V.E., 2015. Fractal electrodynamics via non-integer dimensional space approach. Phys. Lett. A, 36(379), pp. 2055—2061. DOI: https://doi.org/10.1016/j.physleta.2015.06.032
10. Ali, I., Haq, S., Aldosary, S.F., Nisar, K.S., and Ahmad, F., 2022. Numerical solution of one- and two-dimensional time-fractional Burgers equation via Lucas polynomials coupled with Finite difference method. Alex. Eng. J., 61(8), pp. 6077—6087, ISSN 1110- 0168. DOI: https://doi.org/10.1016/j.aej.2021.11.032
11. Ali, U., Ahmad, H., Baili, J., Botmart, T., and Aldahlan, M.A., 2022. Exact analytical wave solutions for space-time variable-order fractional modified equal width equation. Results Phys., 33, id. 105216, ISSN 2211-3797. DOI: https://doi.org/10.1016/j.rinp.2022.105216
12. Leibniz, G.W., 1853. Leibniz an de l’Hopital (Letter from Hannover, Germany, September 30, 1695) Oeuvres Mathérnatiques de Leibniz. Correspondence de Leibniz avec Huygens, van Zulichem et le Marquis de L’Hopital. Paris: Libr. de A. Franck, ed., p. 1, vol. 2, pp. 297—302.
13. Euler, L., 1738. De progressionibvs transcendentibvs, sev qvarvm termini generates algebraice dari neqvevn. Comment. Acad. Sci. Imperialis petropolitanae, 5, pp. 38—57.
14. Laplace, P.S., 1812. Théorie analytique des probabilités. Paris: Courcier.
15. Fourier, J., 1955. The Analytical Theory of Heat. New York: Dover publ. First publ.: (Théorie Analytique de la Chaleur, Par M. Fourier. A Paris: Chez firmin didot pere et fils, 1822).
16. Abel, N. H., 1881. Solution de quelques problemes a l’aide d’integrales defines. Gesammelte mathematische werke. Leipzig: Teubner, 1, pp. 11—27. (First publ. in Mag. Naturvidenkaberne, Aurgang 1. Bd 2. Christiania 1823).
17. Liouville, J., 1832. Mémoire sur quelques Quéstions de Géometrie et de Mécanique, et sur un nouveau genre de Calcul pour résoudre ces Quéstions. J. I’Ecole Roy. Polytechn., 13(21), pp. 1—69.
18. Riemann, B., 1876. Versuch einer allgemeinen Auffassung der Integration und Differentiation. Gesammelte Mathematische Werke. Leipzig: Teubner, p. 331—344.
19. Holmgren, Hj., 1865—1866. Om differentialkalkylen med indices af hvad natur som heist. Kongl. Svenska Vetenskaps-Akad. Handl. Stockholm., 5(11), SS. 1–83.
20. Grünwald, A. K., 1867. Uber «begrenete» Derivationen und deren Anwendung. Zangew. Math, und Phys., 12, SS. 441—480.
21. Letnikov, A. V., 1868. Theory of differentiation with an arbitrary pointer. Math. sb., 3, pp. 1—68 (in Russian).
22. Sonin, N. Ya., 1870. Message about differentiation with an arbitrary pointer. Tr. 2-th s’jezda russkikh estestvoispytateley, 2, pp. 18— 21 (in Russian).
23. Hadamard, J., 1892. Essai sur l’étude des fonctions données par leur développement de Taylor. J. Math, Pures Appl. 8, pp. 101—186.
24. Hardy, G.H., and Riesz, M., 1915. The general theory of Dirichlet’s series. Cambridge Univ. Press., 18, 78 p.
25. Weyl, H., 1917. Bemerkungen zum begriff des Differentialquotienten gebrochener Ordnung. Vierteljahrcsschrift der Naturforschenden Gesellschaft in Zurich, 62(1—2), SS. 296—302.
26. Tarasov, V. E., 2008. Fractional vector calculus and fractional Maxwell’s equations. Ann. Phys., 323(11), pp. 2756—2778. DOI: https://doi.org/10.1016/j.aop.2008.04.005
27. Liang, Y., 2019. Hausdorff Calculus. Applications to Fractal Systems. Berlin/Boston: Walter de Gruyter GmbH. DOI:https://doi.org/10.1515/9783110608526
28. Sabban, A., 2018. Novel Wearable Antennas for Communication and Medical Systems. Taylor & Francis Group. DOI: https://doi.org/10.1201/b22261
29. Alisultanov, Z. Z., Agalarov, A. M., Potapov, A. A., and Ragimkhanov, G. B., 2018. Some Applications of Fractional Derivatives in Many-Particle Disordered Large Systems. In: Skiadas, C. H., eds., 2018. Fractional Dynamics, Anomalous Transport and Plasma Science. Springer, pp. 125—154. DOI:https://doi.org/10.1007/978-3-030-04483-1_7
30. Meilanov, R. R., and Yanpolov, M. Y., 2001. Features of the phase trajectory of a fractal oscillator. Tech. Phys. Lett., 28(1), pp. 67—73. DOI: https://doi.org/10.1134/1.1448634
31. Bogolyubov, A. N., Potapov, A. A., and Rekhviashvili, S. Sh., 2009. Introduction of fractional integro-differentiation in classical electrodynamics. Mosc. Univ. Phys. Bull., 64(4), pp. 365—368. DOI: https://doi.org/10.3103/S0027134909040031
32. Van Hieu, N., 1984. Fundamentals of the Method of Second Quantization. Moscow: Energoatomizdat.
Keywords
Full Text:
PDFCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)