A 20…25 GHZ RANGE RADIOMETER ( λ = 1.35 cm) FOR INTEGRAL TROPOSPHERIC ABSORPTION MEASUREMENTS
Abstract
Subject and Purpose. The current research projects in astrophysics are in need of high-sensitivity scientific instruments. The accuracy and sensitivity of observations can be enhanced through the use of large radio telescopes and other radio frequency systems, as well as via application of diagnostic instruments intended for exploring the radio propagation conditions along the signal paths. The paths traverse all of the Earth’s outer structural shells, from the atmosphere to remote layers of the magnetosphere. The present work is aimed at developing a highly sensitive off-set radiometer, operable in the frequency range of 20…25 GHz (1.35 cm waveband) and capable of monitoring the atmosphere above large centimeter-wavelength radio astronomical instruments, such as the recently developed radio telescope RT-32. The instruments like that should help making account of the integrated tropospheric absorption of the signals arriving from space radio sources and artificial objects in the near space.
Methods and Methodology. The modern software that is used for simulating operation of microwave circuits, and the high quality models of microwave units available on the market, allow analyzing various circuit options, thus enabling a full-fledged development of such devices. As long as the intended implementations of the radiometer suggest the use of exclusively standard, commercially available and preferably off-the-shelf components, the development was based on analyzing the parameters and layout of such units.
Results. An ultra-high sensitivity, broadband radiometer for the 1.35 cm range has been developed, which is intended for measuring integrated tropospheric absorption of the relevant radio waves. The calculated noise factor of the instrument is 2.3 dB. The extended bandwidth and high stability of the radiometer elements will provide for a sufficient sensitivity of the instrument as operated in conjunction with the receive system of the RT-32 radio telescope.
Conclusions. The high-sensitivity, broadband radiometer that has been developed will provide for a much greater operative accuracy of radio astronomical and radio physical research projects. The radiometer, which has potential for further modernization, has been designed for use with the multi-band, high-tech radio telescope RT-32 in the interests of radio astronomy and space science, in particular for monitoring and forecasting the state of atmospheric and space weather systems.
Keywords: radiometer, radio telescope RT-32, atmosphere, atmospheric and space weather systems
Manuscript submitted 12.12.2023
Radio phys. radio astron. 2024, 29(3): 229-235
REFERENCES
1. Ulyanov, O.M., Reznichenko, O.M., Zakharenko, V.V., Antyufeyev, A.V., Korolev, A.M., Patoka, O.M., Prisiazhnii, V.I., Poichalo, A.V., Voityuk, V.V., Mamarev, V.N., Ozhinskii, V.V., Vlasenko, V.P., Chmil, V.M., Lebed, V.I., Palamar, M.I., Chaikovskii, A.V., Pasternak, Yu.V., Strembitskii, M.A., Natarov, M.P., Steshenko, S.O., Glamazdyn, V.V., Shubny, A.S., Kirilenko, A.A., Kulik, D.Y., Konovalenko, A.A., Lytvynenko, L.M., and Yatskiv, Y.S., 2019., Creating the RT-32 Radio Telescope on the Basis of MARK- 4B Antenna System. 1. Modernization Project and First Results. Radio Phys. Radio Astron., 24(2), pp. 87—116. DOI: 10.15407/ rpra24.02.087
2. Antyufeyev, A.V., Korolev, A.M., Patoka, O.M., Shulga, V.M., Ulyanov, O.M., Reznichenko, O.M., Zakharenko, V.V., Prisiazh- nii, V.I., Poichalo, A.V., Voityuk ,V.V., Mamarev, V.N., Ozhinskii, V.V., Vlasenko, V.P., Chmil, V.M., Lebed, V.I., Palamar, M.I., Chaikovskii, A.V., Pasternak, Yu.V., Strembitskii, M.A., Natarov, M.P., Steshenko, S.O., Glamazdyn, V.V., Shubny, A.S., Kirilenko, A.A., Kulik, D.Y., and Pylypenko, A.M., 2019. Creating the RT-32 Radio Telescope on the Basis of MARK-4B Antenna System. 2. Estimation of the Possibility for Making Spectral Observations of Radio Astronomical Objects. Radio Phys. Radio Astron., 24(3), pp. 163—183. DOI: https://doi.org/10.15407/rpra24.03.163
3. Ulyanov, O.M., Zakharenko, V.V., Alekseev, E.A., Reznichenko, O.M., Kulahin, I.O., Budnikov, V.V., Prisiazhnii, V.I., Poichalo, A.V., Voityuk ,V.V., Mamarev, V.N., Ozhinskii, V.V., Vlasenko, V.P., Chmil, V.M., Sunduchkov, I.K., Berdar, M.M., Lebed, V.I., Palamar, M.I., Chaikovskii, A.V., Pasternak, Yu.V., Strembitskii, M.A., Natarov, M.P., Steshenko, S.O., Glamazdyn, V.V., Shubny, A.S., Kirilenko, A.A., Kulyk, D.Y., 2020. The RT-32 Radio Telescope on the Basis of MARK-4B Antenna System. 3. Local Oscillators and Self-Noise of the Receiving System. Radio Phys. Radio Astron., 25(3), pp. 175—192. DOI: https://doi.org/10.15407/rpra25.03.175
4. Zakharenko, V.V., 2020. Commissioning of the RT-32 radio telescope — new opportunities for domestic radio astronomy and space navigation. Visn. Nac. Acad. Nauk Ukr., 12, pp. 69—75. DOI: https://doi.org/10.15407/visn2020.12.069
5. Ozhinskyi, V., Vlasenko, V., Poikhalo, A., Prysyazhnyi, V., Voitiuk, V., Yankiv-Vitkovska, L., Ulianov, O., Zakharenko, V., Chmil, V.V., Chmil, V.M., 2022. Utilizing the Radio Telescope RT-32 in Space Geodesy. Ser. Wydawnicza Wspolczesna Nawigacja. T. IV. Wykorzystanie technik nawigacyjnych w lotnictnictwie. Deblin: Lotnicza Akademia Wojskowa, pp. 101—110. DOI: https://indd. adobe.com/view/002119ff-5ae8-45f1-bcfa-0c94c48c06e8
6. Natarov, M., Ulyanov, O., Prisiazhnii, V., Glamazdin, V., Zakharenko, V., Poikhalo, A., Shubnyi, O., Alekseev, E., Voytyuk, V., Chmil, V., Reznichenko, O., Ozhinskyi, V., Vlasenko, V., Palamar, M., 2022. Modernization Possibility of the MARK-4B Antenna System of the RT-32 Radio Telescope for Dual-Band Operation in the S/X Frequency Range. In: 2022 IEEE 2nd Ukrainian Microwave Week (UkrMW). Kharkiv, Ukraine, 14—18 Nov. 2022, pp. 299—304. DOI: https://doi.org/10.1109/UkrMW58013.2022.10037156
7. Vlasenko, V.P., Ozhіnskyі, V.V., Mamarev, V.M., Ulyanov, O.M., Zakharenko, V.V., Palamar, M.I., Chaikovskyi, A.V. 2021., Method of Constructing the Primary Error Matrix of the RT-32 Radio Telescope in an Automated Mode. Space Sci. Technol., 7(3), pp. 66— 75. DOI: https://doi.org/10.15407/knit2021.03.066
8. Sukharev, A., Ryabov, M., Bezrukovs, V., Ulyanov, O., Udovichenko, S., Keir, L., Dubovsky, P., Kudzej, I., Konovalenko, A., Zakharenko, V., Bakun, D., Eglitis, I., 2021. Study of the Fast Variability of the Radio Galaxy 3C 84 (Perseus A) in Optical Bands. Astron. Astrophys. Trans., 32(3), pp. 211—226. DOI: https://doi.org/10.17184/eac.5642
9. Sukharev, A., Ryabov, M., Bezrukovs, V., Orbidans, A. 2022. Investigation of Intra-Day Variability of the Radio Galaxy 3C 84 (Perseus A) Flux Density in Centimeter Range on the RT-32 VIRAC (Latvia) and RT-32 NSFCTC (Ukraine) Radio Telescopes. Astron. Astrophys. Trans., 33(2), pp 49—174. DOI: https://doi.org/10.17184/eac.6477
10. Dicke, R.H., 1946. The Measurement of Thermal Radiation at Microwave Frequencies. Rev. Sci. Instrum., 17(7), pp. 268—275. DOI: https://doi.org/10.1063/1.1770483
11. Macom Technology Solutions Inc., 2022. SPDT Reflective Switch DC 67 GHz MASW-011151 Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://cdn.macom.com/datasheets/MASW-011151.pdf
12. QORVO US, INC., 2021. 17—25 GHz Low Noise Amplifier CMD298C4 Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://www.mouser.com/datasheet/2/412/CMD298C4_Data_Sheet-1950757.pdf
13. Analog Devices Inc., 2022. Wideband, Low Noise Amplifier, Single Positive Supply, 0.01 GHz to 26.5 GHz Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/adl9005. pdf
14. Knowles Precision Devices, 2018. 16 GHz Surface Mount High-Pass Filter H160XHXS Data Sheet [online]. [viewed 12 December 2023]. Available from: https://eu.mouser.com/datasheet/2/218/H160XHXS_Datasheet-3006864.pdf
15. Knowles Precision Devices, 2015. 25.4 GHz Surface Mount LPF L254XF3S Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://www.knowlescapacitors.com/getattachment/Products/Microwave-Products/Lowpass-Filters/L254XF3S- Datasheet.pdf.aspx
16. Analog Devices Inc., 2020. 100MHz to 70GHz Linear-in-dB RMS Power Detector with 35dB Dynamic Range LTC5597 Data Sheet [online]. [Viewed 12 December 2023]. Available from: https://www.analog.com/media/en/technical-documentation/data-sheets/ ltc5597.pdf
17. QucsStudio a free and powerful circuit simulator. Available from: http://qucsstudio.de
Keywords
Full Text:
PDFCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)