A PLANAR n⁺ –n–n⁺ GaAs DIODE WITH GaInAs-BASED GRADED-GAP ACTIVE SIDE BOUNDARYN

DOI: https://doi.org/10.15407/rpra29.04.317

V. O. Zozulia, O. V. Botsula, K. H. Prykhodko

Abstract


Subject and Purpose. The generation of millimeter-wave oscillations by a planar GaAs diode with active side boundary (ASB) is considered. The diode structure is placed on a semiconductor semi-insulating substrate and represents a GaAs channel approximately 1μm long. Its lateral surface carries a semiconductor element based on a graded-gap GaInAs layer electrically connected to the anode. The work seeks to assess the oscillation efficiency and the maximum output power of the diode oscillator loaded with a single-circuit resonator, determine the oscillation frequency cut-off, and estimate how the energy and frequency characteristics of the diode are influenced by the impact ionization and GaInAs spatial distribution in the graded-gap layer.

Methods and Methodology. The carrier transport processes in the diode are simulated using a two-dimensional model, the particle ensemble Monte Carlo method, and the full geometric multigrid method to determine the electric fi eld distribution in the diode.

Results. The characteristics of direct-current diodes have been obtained, along with frequency dependences of the oscillation efficiency and output power of based on them oscillators in a range of ASB parameters. The effect that the impact ionization and the GaInAs spatial distribution in the graded-gap layer exert on the maximum power of the alternating current at frequencies above 180 GHz has been analyzed. A possibility has been shown to generate alternating electric currents at frequencies up to 300 GHz, with the efficiency of the oscillators upon the examined ASB-diodes being two to three times higher than the efficiency of oscillators upon conventional GaAs-based planar diodes.

Conclusions. It has been confirmed that ASB-diodes hold much promise for the alternating current generation at frequencies up to 300 GHz. The ASB application increases the output power of the device and extends the frequency range compared to the ordinary planar diode. Th e impact ionization in the graded-gap layer improves the diode characteristics but is not the decisive factor. The efficiency and the output power of the diode oscillator are most exerted by the ASB position relative to the diode electrodes. Diodes with the ASB located closer the cathode provide a larger oscillation power. The ASB position closer to the anode yields higher frequencies.

Keywords: millimeter wave, active side boundary (ASB), graded layer, impact ionization, mole fraction, oscillation efficiency, output power, intervalley transfer of electrons

Manuscript submitted  03.08.2023

Radio phys. radio astron. 2024, 29(4): 317-326

REFERENCES

1. Shi, L.-F., Zahid, A., Ren, A., Ali, M.Z., Yue, H., Imran, M.A., Shi, Y., Abbasi, Q.H., 2023. The perspectives and trends of THz technology in material research for future  communication — a comprehensive review. Phys. Scr., 98(6), 065006. DOI: https://doi.org/10.1088/1402-4896/accd9d

2. Song, H.-J., Nagatsuma, T., 2015. Handbook of Terahertz Technologies. Jenny Stanford Publishing. DOI: https://doi.org/10.1201/b18381

3. Izumi, R., Suzuki, S., Asada, M., 2017. 1.98 THz resonant-tunneling-diode oscillator with reduced conduction loss by thick antenna electrode. In: 2017 42nd Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Cancun, Mexico, 27 Aug. — 1 Sept. 2017. IEEE, 2017. DOI: https://doi.org/10.1109/IRMMW-THz.2017.8066877

4. Asada, M., Suzuk,i S., 2021. Terahertz Emitter Using Resonant-Tunneling Diode and Applications. Sensors, 21(4), 1384. DOI: https://doi.org/10.3390/s21041384

5. Norkus, R., Paeebutas, V., Stanionyte, S., Biciuuas, A., Urbanowicz, A., Krotkus, A., 2019. Terahertz pulse emission from GaInAsBi. In: 2019 44th Int. Conf. on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). Paris, France, 1—6 Sept. 2019. IEEE,
2019. DOI: https://doi.org/10.1109/IRMMW-THz.2019.8873704

6. Zhai, D., Hérault, E., Garet, F., Coutaz, J., 2021. Terahertz generation from ZnTe optically pumped above and below the bandgap. Opt. Express, 29(11), 17491. DOI: https://doi.org/10.1364/OE.421282

7. Dai, Y., Lu, Z., Ye, Q., Dang, J., Zhao, S., Lei, X., Yun, J.-H., Zhao, W., Liu, C., 2021. Study of InxGa1−xN/GaN Homotype Heterojunction IMPATT Diodes. IEEE Trans. Electron Devices, 68(11), pp. 5469—5475. DOI: https://doi.org/10.1109/TED.2021.3075172

8. Íñiguez-de-la-Torre, A., Íñiguez-de-la-Torre, I., Mateos, J., González, T, Sangaré, P., Faucher, M., Grimbert, B., Brandli, V., Ducournau, G., Gaquière, C., 2012. Searching for THz Gunn oscillations in GaN planar nanodiodes. J. Appl. Phys., 111(11), 113705.
DOI: https://doi.org/10.1063/1.4724350

9. Khalid, A., Dunn, G.M., Macpherson, R.F., Thoms, S., Macintyre, D., Li, C., Steer, M.J., Papageorgiou, V., Thayne, I., Kuball, M., Oxley, C.H., Bajo, M.M., Stephen, A., Glover, J., Cumming, D.R.S., 2014. Terahertz oscillations in an In0.53Ga0.47As submicron planar Gunn diode. J. Appl. Phys., 115(11), 114502. DOI: https://doi.org/10.1063/1.4868705

10. Storozhenko, I., Sanin, S., 2022. Advanced Micron Sized Gunn Diode Based on Graded-Gap GaPAs — GaInAs. J. Nano- Electron. Phys., 14(1), 01027. DOI: https://doi.org/10.21272/jnep.14(1).01027

11. Storozhenko, I., 2020. Gunn Diodes Based on Graded-gap GaInPAs. J. Nano- Electron. Phys., 12(1), 01015. DOI: https://doi.org/10.21272/jnep.12(1).01015

12. Hong-Liang, Z., Yang, L.-A., Zou, H., Ma, X., Hao, Y., 2019. Enhancement of Negative Differential Mobility Effect in Recessed Barrier Layer AlGaN/GaN HEMT for Terahertz Applications. IEEE Trans. Electron Devices, 66(3), pp. 1236—1242. DOI: https://doi.org/10.1109/TED.2019.2893640

13. Urteaga, M., Pierson, R., Rowell, P., Jain, V., Lobisser, E., Rodwell, M.J.W., 2011. 130nm InP DHBTs with ft > 0.52 THz and fmax > 1.1 THz. In: 2011 69th Annual Device Research Conf. (DRC). Santa Barbara, CA, USA, 20—22 June 2011. IEEE, 2011.

14. Song, L., Zhao, M., 2018. The research of W-band high order frequency multiplier based on avalanche diode. Prog. Electromagn. Res. Lett., 72, pp. 45—53. DOI: https://doi.org/10.2528/PIERL17092109

15. Lukin, K.A., Cerdeira, H.A., Maksymov, P.P., 2003. Self-oscillations in reverse biased pn junction with current injection. Appl. Phys. Lett., 83(22), pp. 4643—4645. DOI: https://doi.org/10.1063/1.1627939

16. Stake, J., Malko, A., Bryllert, T., Vukusic, J., 2017. Status and Prospects of High-Power Heterostructure Barrier Varactor Frequency Multipliers. Proc. IEEE, 105(6), pp. 1008—1019. DOI: https://doi.org/10.1109/JPROC.2016.2646761

17. Prykhodko, K.H., Zozulia, V.O., Botsula, O.V., 2017. Graded band gap InGaAs diodes for terahertz applications. In: 2017 IEEE Int. Young Scientists’ Forum on Applied Physics and Engineering (YSF). Lviv, Ukraine, 17—20 Oct. 2017. IEEE, 2017. DOI: https://doi.org/10.1109/YSF.2017.8126637

18. Prokhorov, E.D., Botsula, O.V., 2011. Negative differential conductivity of a tunnel side- boundary semiconductor diode. Telecommunications and Radio Engineering, 70(9), pp. 809—818. DOI: https://doi.org/10.1615/TelecomRadEng.v70.i9.50

19. Botsula, O.V., Prykhodko, K.H., Zozulia, V.O., 2019. Diodes with Lateral n+–n-Border. In: 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON), Lviv, Ukraine, 2—6 July 2019. IEEE, 2019. DOI: https://doi.org/10.1109/UKRCON.2019.8879884

20. Botsula, O.V., Zozulia, V.O., 2021. Energy and Frequency Properties of Planar n+–n–n+ Diodes with Active Side Boundary. J. Nano- Electron. Phys., 13(6), 06028. DOI: https://doi.org/10.21272/jnep.13(6).06028

21. Botsula, O.V., Zozulia, V.O., 2020. Generation of THz Oscillations by Diodes with Resonant Tunneling Boundaries. J. Nano- Electron. Phys., 12(6), 06037. DOI: https://doi.org/10.21272/jnep.12(6).06037

22. Jacoboni, C., Reggiani, L., 1983. The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent materials. Rev. Mod. Phys., 55(3), pp. 645—705. DOI: https://doi.org/10.1103/RevModPhys.55.645

23. Brennan, K.F., Mansour, N.S., 1991. Monte Carlo calculation of electron impact ionization in bulk InAs and HgCdTe. J. Appl. Phys., 69(11), pp. 7844—7847. DOI: https://doi.org/10.1063/1.347516

24. Joppich, W., Mijalković, S., 1993. Multigrid methods for process simulation. Vienna: Springer Vienna. DOI: https://doi.org/10.1007/978-3-7091-9253-5

25. Laux, S.E., 1996. On particle-mesh coupling in Monte Carlo semiconductor device simulation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 15(10), pp. 1266—1277. DOI: https://doi.org/10.1109/43.541446

26. Botsula, O., Prykhodko, K., Zozulia, V., 2021. Impact ionization in graded gap transferred electron diode. In: 2021 IEEE 3rd Ukraine Conference on Electrical and Computer Engineering (UKRCON). Lviv, Ukraine, 26—28 Aug. 2021. IEEE, 2021. DOI: https://doi.org/10.1109/UKRCON53503.2021.9575748

27. Adachi, S., 1985. GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications. J. Appl. Phys., 58(3), pp. R1—R29. DOI: https://doi.org/10.1063/1.336070

28. Rolland, P.A., Friscourt, M.R., Salmer, G., Constant, E., 1981. Theoretical study of 100 GHz GaAs transferred-electron devices. J. Phys. Colloq., 42(C7), pp. 171—176. DOI: https://doi.org/10.1051/jphyscol:1981719


Keywords


millimeter wave; active side boundary (ASB); graded layer; impact ionization; mole fraction; oscillation efficiency; output power; intervalley transfer of electrons

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)