ELECTRICAL AND NOISE PROPERTIES OF A SYMMETRICAL ANTENNA WITH AN ACTIVE BALUN

DOI: https://doi.org/10.15407/rpra30.01.041

P. L. Tokarsky

Abstract


Subject and Purpose. The paper considers an active receiving antenna composed of a symmetrical passive antenna and an active balun that consists of a diff erential pair of identical low-noise amplifiers and a three-winding differential-input single-ended transformer. The purpose of the paper is developing a model of such an active antenna in the form of an equivalent two-port network with analytically determined electrical and noise parameters.

Methods and Methodology. The study is based on methods of antenna theory and noise theory of multi-port networks. The passive antenna is conditionally divided into two identical arms, each regarded as a separate independent antenna, which allows representing the entire active antenna as a three-port network. Then, making allowance for the antisymmetric excitation of the three-port network inputs, it has been converted into a cascade of two two-port networks. The first one corresponds to the passive antenna, and the second to the active balun consisting of one low-noise amplifier with transformers added at input and output .

Results. Proceeding from a block diagram of the active antenna, seen as a two-port network, analytical expressions were derived to allow calculations of its scattering matrix and the correlation matrix of noise waves. These permit evaluating electrical and noise parameters of the symmetrical antenna with an active balun. A numerical example is presented, which allows comparing parameters of two symmetrical active antennas, one of which uses the active balun, while the other a low-noise amplifier with a passive balun.

Conclusions. The block diagrams developed and the explicit relationships obtained allow a greatly simplified analysis of the symmetric antennas that employ active baluns as they do not need resorting to any specialized software. The results may prove useful for calculating the parameters of low-frequency radio telescopes that employ similar antennas in the capacity of phased array elements.

Keywords: symmetrical antenna, active balun, two-port network, scattering matrix, noise waves’ correlation matrix

Manuscript submitted 02.09.2024

Radio phys. radio astron. 2025, 30(1): 041-050

REFERENCES

1. Sevick, J., 2001. Transmission Line Transformers. 4th ed. Atlanta, GA, USA: Noble Publishing.

2. Konovalenko, A., Sodin, L., Zakharenko, V., Zarka, P., Ulyanov, O., Sidorchuk, M., Stepkin, S., Tokarsky, P., Melnik, V., Kalinichenko, N., Stanislavsky, A., Koliadin, V., Shepelev, V., Dorovskyy, V., Ryabov, V., Koval, A., Bubnov, I., Yerin, S., Gridin, A., Kulishenko, V., Reznichenko, A., Bortsov, V., Lisachenko, V., Reznik, A., Kvasov, G., Mukha, D., Litvinenko, G., Khristenko, A., Shevchenko, V. V., Shevchenko, V. A., Belov, A., Rudavin, E., Vasylieva, I., Miroshnichenko, A., Vasilenko, N., Olyak, M., Mylostna, K., Skoryk, A., Shevtsova, A., Plakhov, M., Kravtsov, I., Volvach, Y.,  Lytvinenko, O., Shevchuk, N., Zhouk, I., Bovkun, V., Antonov, A., Vavriv, D., Vinogradov, V., Kozhin, R., Kravtsov, A., Bulakh, E., Kuzin, A., Vasilyev, A., Brazhenko, A., Vashchishin, R., Pylaev, O., Koshovyy, V., Lozinsky, A., Ivantyshin, O., Rucker, H. O., Panchenko, M., Fischer, G., Lecacheux, A., Denis, L., Coffre, A., Grießmeier, J.-M., Tagger, M., Girard, J., Charrier, D., Briand, C., and Mann, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron., 42(1), pp. 11—48. DOI: https://doi.org/10.1007/s10686-016-9498-x

3. Gonzalez-Esparza, A., Carrillo, A., Andrade, E., Jeyakumar, S., Perez-Enriquez, R., and Kurtz, S., 2002. The MEXART interplanetary scintillation array in Mexico. Geofís. Int., 43(1), pp. 61—73. DOI: https://doi.org/10.22201/igeof.00167169p.2004.43.1.215

4. Oraizi, H., 2016. Impedance Matching and BALUNs. In: Z.N. Chen, ed. Handbook of Antenna Technologies. Singapore: Springer Nature, pp. 3350—3428. DOI: https://doi.org/10.1007/978-981-4560-44-3_133

5. Costain, C., Lacey, J., and Roger, R., 1969. Large 22-MHz array for radio astronomy. IEEE Trans. Antennas Propag., 17(2), pp. 162—169. DOI:https://doi.org/10.1109/TAP.1969.1139409

6. Sastry, Ch.V., 1995. The decameter and meter wave radiotelescopes in India and Mauritius. Space Sci. Rev., 72, pp. 629—654. DOI: https://doi.org/10.1007/BF00749008

7. Abidi, A.A., 2003. General Relations between IP2, IP3, and Offsets in Differential Circuits and the Effects of Feedback, IEEE Trans. Microw. Theory Techn., 51(5), pp. 1610—1612. DOI: https://doi.org/10.1109/TMTT.2003.810147

8. Falkovich, I.S., Konovalenko, A.A., Gridin, A.A., Sodin, L.G., Bubnov, I.N., Kalinichenko, N.N., Rashkovskii, S.L., Mukha, D.V., and Tokarsky, P.L., 2011. Wide-band high linearity active dipole for low frequency radio astronomy. Exp. Astron., 32(2), pp. 127—145. DOI: https://doi.org/10.1007/s10686-011-9256-z

9. Ellingson, S.W., Taylor, G.B., Craig, J., Hartman, J., Dowell, J., Wolfe, C.N., Clarke, T.E., Hicks, B.C., Kassim, N.E., Ray, P.S., Rickard, L.J., Schinzel, F.K., and Weiler, K.W., 2013. The LWA1 Radio Telescope, IEEE Trans. Antennas Propag., 61(5), pp. 2540—2549. DOI: https://doi.org/10.1109/TAP.2013.2242826

10. Stewart, K.P., Hicks, B.C., Ray, P.S., Crane, P.C., Kassim, N.E., Bradley, R.F., and Erickson, W.C., 2004. LOFAR antenna development and initial observations of solar bursts. Planet. Space Sci., 52(15), pp. 1351—1355. DOI: https://doi.org/10.1016/j.pss.2004.09.014

11. Ellingson, S.W., Simonetti, J.H., and Patterson, C.D., 2007. Design and Evaluation of an Active Antenna for a 29—47 MHz Radio Telescope Array. IEEE Trans. Antennas Propag., 55(3), pp. 826—831. DOI: https://doi.org/10.1109/TAP.2007.891866

12. Rosa, G.S., Schuch, N.J., Gomes, N.R., Bergmann, J.R., Echer, E., and Machado, R., 2012. Inexpensive Interferometer for Low Frequency Radio Astronomy. Journal of Communication and Information Systems (JCIS), 27(1). DOI: https://doi.org/10.14209/jcis.2012.5

13. De Lera Acedo E., Razavi-Ghods, N., Troop, N., Drought, N., and Faulkner, A.J., 2015. SKALA, a log-periodic array antenna for the SKA-low instrument: design, simulations, tests and system considerations. Exp. Astron., 39, pp. 567—594. DOI: https://doi.org/10.1007/s10686-015-9439-0

14. Shaw, R.D., Hay, S.G., and Ranga, Y., 2012. Development of a Low-Noise Active Balun for a Dual-Polarized Planar Connected Array Antenna for ASKAP. In: 2012 Int. Conf. Electromagnetics in Advanced Applications. Cape Town, South Africa, 02—07 Sept. 2012. DOI: https://doi.org/10.1109/ICEAA.2012.6328666

15. Sutinjo, A.T., Colegate, T.M., Wayth, R.B., Hall, P.J., de Lera Acedo, E., Booler, T., Faulkner, A.J., Feng, L., Hurley-Walker, N., Juswardy, B., Padhi, S.K., Razavi-Ghods, N., Sokolowski, M., Tingay, S.J., and Bij de Vaate, J.G., 2015. Characterization of a Low-Frequency Radio Astronomy Prototype Array in Western Australia. IEEE Trans. Antennas Propag., 63(12), pp. 5433—5442. DOI: https://doi.org/10.1109/TAP.2015.2487504

16. Zarka, P., Denis, L., Tagger, M., Girard, J., Coffre, A., Dumez-Viou, C., Taffoureau, C., Charrier, D., Bondonneau, L., Briand, C., Casoli, F., Cecconi, B., Cognard, I., Corbel, S., Dallier, R., Ferrari, C., Grießmeier, J-M., Loh, A., Martin, L., Pommier, M., Semelin, B., Tasse, C., Theureau, G., Tremou, E., Hellbourg, G., Konovalenko, A., Koopmans, L., Tokarsky, P., Ulyanov, O., Vermeulen, R., and Zakharenko, V., 2020. The low-frequency  radio telescope NenuFAR. In: Proc. XXXIIIrd URSI General Assembly and Scientific Symposium. Rome, Italy, 29 August — 5 Sept. 2020, J01-02. [viewed 20.08.2024]. Available from: https://www.ursi.org/proceedings/procGA20/papers/URSIGASS2020SummaryPaperNenuFARnew.pdf

17. Tokarsky, P.L., Konovalenko, A.A., Yerin, S.N., and Bubnov, I.N. An Active Antenna Subarray for the Low-Frequency Radio Telescope GURT–Part I: Design and Theoretical Model. IEEE Trans. Antennas Propag., 67(12), pp. 7304—7311. DOI: https://doi.org/10.1109/TAP.2019.2927841

18. Bubnov, I.N., Konovalenko, O.O., Tokarsky, P.L., Korolev, O.M., Yerin, L.O., and Stanislavsky, S.M. 2021. Creation and approbation of a low-frequency radio astronomy antenna for studying objects of the Universe from the farside of the Moon. Radio Phys. Radio Astron., 26(3), pp. 197—210. DOI: https://doi.org/10.15407/rpra26.03.197

19. Stewart, K., Hicks, B., Paravastu, N., Bradley, R., Parashare, C., Erickson, W., Gross, C., Polisensky, E., Crane, P., Ray, P., Kassim, N., and Weiler K., 2005. Recent Progress in Active Antenna Designs for the Long Wavelength Array (LWA), 2005. In: Proc. URSI General Assembly. New Delhi, India, 23—29 Oct. 2005. [viewed  20.08.2024]. Available from: https://www.ursi.org/proceedings/procGA05/pdf/J03-P.15(0981).pdf

20. Bradley, R.F., and Parashare, C.R., 2005. Evaluation of the NRL LWA Active Balun Prototype. NRAO NTC-DSL Laboratory Report 01, Rev. A [viewed 20.08.2024]. Available from: https://www.gb.nrao.edu/electronics/edtn/edtn220.pdf

21. Korolev, A.M., Zakharenko, V.V., and Ulyanov, O.M., 2016. Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment. Exp. Astron., 41(1—2), pp. 215—221. DOI: https://doi.org/10.1007/s10686-015-9466-x

22. Sutinjo, A.T., Ung, D.C.X., and Juswardy, B., 2018. Cold-Source Noise Measurement of a Differential Input Single-Ended Output Low-Noise Amplifier Connected to a Low-Frequency Radio Astronomy Antenna. IEEE Trans. Antennas Propag., 66(10), pp. 5511—5520. DOI: https://doi.org/10.1109/TAP.2018.2854285

23. Prinsloo, D.S., Maaskant, R., Ivashina, M.V., and Meyer, P., 2014. Mixed-Mode Sensitivity Analysis of a Combined Differential and Common Mode Active Receiving Antenna Providing Near-Hemispherical Field-of-View Coverage. IEEE Trans. Antennas Propag., 32(2), pp. 3951—3961. DOI: https://doi.org/10.1109/TAP.2014.2322896

24. Dobrowolski, J.A., 2016. Scattering Parameters in RF and Microwave Circuits Analysis and Design. Norwood, MA, USA: Artech House.

25. Tokarsky, P.L., 2020. Antenna Analytical Representation by a Two-Port Network. Int. J. Antennas Propag., 2020, id. 2609747. DOI: https://doi.org/10.1155/2020/2609747

26. Gupta, K., Garg R., and Chandra, R., 1981. Computer-aided design of microwave circuits. Dedham, MA, USA: Artech House.

27. Flux Coupled Balun 1:2. [viewed 20.08.2024]. Available from: https://www.macom.com/products/product-detail/MABA-011050

28. RF Flux Coupled Transformer 1:4, E-Series. [viewed 20.08.2024]. Available from: https://www.macom.com/products/product-detail/MABAES0031

29. Russer, P., and Muller, S., 1990. Noise analysis of linear microwave circuits. Int. J. Numer. Model. El., 3, pp. 287—316. DOI: https://doi.org/10.1002/jnm.1660030408

30. Pospieszalski, M.W., 2010. Interpreting Transistor Noise. IEEE Microwave Mag., 11(6), pp. 61—69. DOI: https://doi.org/10.1109/MMM.2010.937733

31. Tokarsky, P.L., Konovalenko, A.A., and Yerin S.N., 2017. Sensitivity of an Active Antenna Array Element for the Low-Frequency Radio Telescope GURT. IEEE Trans. Antennas Propag., 65(9), pp. 4636—4644. DOI: https://doi.org/10.1109/TAP.2017.2730238

32. Tokarsky, P.L., Konovalenko, A.A., Yerin, S.N., and Bubnov I.N., 2016. Sensitivity of Active Phased Antenna Array Element of GURT Radio Telescope. Radio Phys. Radio Astron., 21(1), pp. 48—57. DOI: https://doi.org/10.15407/rpra21.01.048

33. Hicks, B.C., Paravastu-Dalal, N., Stewart, K.P., Erickson, W.C., Ray, P.S., Kassim, N.E., Burns, S., Clarke, T., Schmitt, H., Craig, J., Hartman, J., and Weiler, K.W., 2012. A wide-band, active antenna system for long wavelength radio astronomy. Publ. Astron. Soc. Pac., 124(920), pp. 1090—1104. DOI: https://doi.org/10.1086/668121

34. Tokarsky, P.L., Konovalenko, A.A., and Modelski, J.W., 2023. An Active Ribbon Dipole as an Array Element Prototype for the Lunar Very Low Frequency Radio Telescope. IEEE Access, 11, pp. 75225—75235. DOI: https://doi.org/10.1109/ACCESS.2023.3294694

 


Keywords


symmetrical antenna; active balun; two-port network; scattering matrix; noise waves’ correlation matrix

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)