ON THE APPLICATION OF TERAHERTZ RADIATION IN VARIOUS FIELDS OF SCIENCE AND TECHNOLOGY

DOI: https://doi.org/10.15407/rpra30.01.051

M. F. Karushkin, V. P. Rukyn

Abstract


Subject and Purpose. The terahertz (THz) wave range possesses many specific properties that make it attractive for fundamental and applied research in astrophysics, radar, security system development, plasma property investigation, gas spectroscopy, biology, and medicine. Due to its low quantum energy, THz radiation is safe for living organisms and can be used to detect pathologies and foreign bodies. The THz range encompasses lines of rotational transitions of molecules, including organic ones, which opens up fresh opportunities for their study and selective manipulation. Broadband coherent pulses of THz radiation are employed to determine the characteristic spectral features of various molecules, forming the basis of new methods for detecting and identifying hazardous chemicals and quality assessment of food and agricultural products.

Methods and Methodology. The specifications for receiving devices and sensitive components used in the radiation detection and measurement are outlined, including details on constructing matrix-type receiving devices for radio vision systems. The authors also review the results of their research related to the development of radiation sources. Additionally, the current advancements in THz-band technology are reported. This work aims to identify specific applications of THz radiation across various fields, including biological research and medicine.

Results. Advancements in THz radiation technology are largely influenced by the advent of simple and cheap semiconductor sources and receivers in the range. The authors solved the problem of creating highly stable and coherent sources for THz radiation using high-multiplicity radio pulse frequency conversion on silicon avalanche structures. The high efficiency of frequency multiplication from such devices is mainly determined by the amplification mechanism in the current pulse through the diode structure and the phase synchronization of microwave oscillations by periodic-sequence harmonics of current pulses. To reduce the radiation source loss, the oscillatory system that contains a semiconductor active component employs open-type radial lines.

Conclusions. The paper shows that the further development of THz technology primarily depends on the current capabilities of radiation sources and receivers with improved characteristics. In particular, the developed generators and frequency multipliers based on avalanche diodes operate in the frequency range 100 to 350 GHz with a power output of 10 to 30 W.

Key words: generator, receiver, frequency multiplier, radio vision, submillimeter range, terahertz range, sensitive element

Manuscript submitted 22.10.2023

Radio phys. radio astron. 2025, 30(1): 051-064

REFERENCES

1. Andrey, D., Grigoriev, A.D., 2020. Terahertz Electronics. Cambridge Scholars.

2. Taylor, Z., Singh, R.S., Bennett, D.B., Tewari, P., Kealey, C., Bajwa, N., Culjat, M.O.,  Stojadinovic, A., Lee, H., Hubschman, J.-P., Brown, E., Grundfest, W.S., 2011. THz medical imaging: in vivo hydration sensing. IEEE Trans. Terahertz Sci. Technol., 1(1), pp. 201—219. DOI: https://doi.org/10.1109/TTHZ.2011.2159551

3. Ajito, K., Ueno, Y., 2011. THz chemical imaging for biological applications. IEEE Trans.  Terahertz Sci. Technol., 1(1), pp. 293—300. DOI: https://doi.org/10.1109/TTHZ.2011.2159562

4. Karushkin, M.F., 2011. Possibilities of using terahertz range of radio waves. In: Materials of scientific and technical conference "Problems of telecommunications". Kyiv: NTUU KPI Publ., pp. 23—27.

5. Schlecht, E., Maiwald, F., Chattopadhyay, G., Martin, S., Mehdi, I., 2001. Design considerations for heavily-doped cryogenic Schottky diode varactor multipliers. In: Proc.  12th Int. Symp. Space Terahertz Technology. San Diego, USA, pp. 485—494.

6. Chattopadhyay, G., 2011. Technology, capability, and performance of low power  terahertz sources. IEEE Trans. Terahertz Sci. Technol., 1(1), pp. 33—53. DOI: https://doi.org/10.1109/TTHZ.2011.2159561

7. Karushkin, M.F., 2002. Solid-state devices and components of the millimeter wavelength range. Appl. Radio Electron., 1(1), pp. 77—81.

8. Rolland, P.A., Waterkowski, J.L., Constant, E., Salmer, G., 1976. New model of operation for avalanche diodes: frequency multiplication and conversion. IEEE Trans. MTT, 11, pp. 768—775. DOI: https://doi.org/10.1109/TMTT.1976.1128958

9. State Enterprise "Orion". Kyiv. Ukraine. Available from: http://www.orion.org.ua

10. Karushkin, M.F., 2018. Millimeter-range frequency multipliers based on semiconductor diode structures. Technology and design in electronic equipment, 3, pp. 22—37. DOI: https://doi.org/10.15222/TKEA2018.3.22

11. Karasik, B.S., Sergeev, A.V., Prober, D.E., 2011. Nanobolometers for THz photon detection. IEEE Trans. Terahertz Sci. Technol., 1(1), pp. 97—111. DOI: https://doi.org/10.1109/TTHZ.2011.2159560

12. Insight Product Co. Terahertz Hot Electron Bolometer Detectors from 0.3 to 150 THz. 2011. Available from: http://www.insight-product.com/detect3.htm

13. Sizov, F.F., Apatska, M.V., Gumenyuk-Sychivska, Zh.V., 2011. Multi-element terahertz radiation receivers based on CdH-gTe. Appl. Phys., 3, pp. 61—66.

14. Reck, T.J., Jung-Kubiak, C., Gill, J., Chattopadhyay, G., 2014. Measurement of silicon micro machined waveguide components at 500—750 GHz. IEEE Trans. Terahertz Sci. Technol., 4(1), pp. 33—48. DOI: https://doi.org/10.1109/TTHZ.2013.2282534

15. Fitzgerald, A.J., Wallace, V.P., Jimenez-Linan, M., Bobrow, L., Pye, R.J., Purushotham, A.D., Arnone, D.D., 2006. Terahertz pulsed imaging of human breast tumors. Radiology, 239(2), pp. 533—540. DOI: https://doi.org/10.1148/radiol.2392041315

16. Saviz, M., Spathmann, O., Streckert, J., Hansen, V., Clemens, M., Faraji-Dana, R., 2013. Theoretical estimation of safety thresholds for terahertz exposure of surface tissues. IEEE Trans. Terahertz Sci. Technol., 3(5), pp. 635—640. DOI: https://doi.org/10.1109/TTHZ.2013.2264327

17. Mittlemon, D. ed., 2003. THz imaging in sensing wish THz radiation. Berlin, Germany: Springer-Verlag., pp. 117—153. DOI: https://doi.org/10.1007/978-3-540-45601-8

18. Woodward, R.M., Wallace, V.P., Cole, B.E., Pye, R.J., Arnone, D.D., Linfield, E.H., Pepper, M., 2002. Terahertz pulse imaging in reflection geometry of skin tissue using time domain analysis techniques. Proc SPIE, Int. Soc. Opt. Eng., 4625, pp. 160—169. DOI: https://doi.org/10.1117/12.469785

19. Fitzgerald, A.J., Berry, E., Zinov’ev, N.N., Homer-Vanniasinkam, S., Miles, R.E., Chamberlain, J.M., and Smith, M.A., 2003. Catalogue of human reissue optical properties at terahertz frequencies. J. Biol. Phys., 29(2—3), pp. 123—128. DOI: https://doi.org/10.1023/A:1024428406218

20. Sirotkina, M.A., Shirmanova, M.V., Bugrova, M.L., Elagin, V.V., Agrba, P.A., Kirillin, M.Yu., Kamensky, V.A., Zagaynova, E.V., 2011. Continuous optical coherence tomography monitoring of nanoportieles accumulation in biological tissues. J. Nanopart. Res., 13(1), pp. 283—291. DOI: https://doi.org/10.1007/s11051-010-0028-x

21. Son, J., 2009. THz electromagnetic interactions with biological matter and their applications. J. Appl. Phys., 105(10), id. 102033. DOI: https://doi.org/10.1063/1.3116140

22. Vegesna, S., Zhu, Y., Bernussi, A., Saed, M., 2012. Terahertz two-layer frequency selective surfaces with improved transmission characteristics. IEEE Trans. Terahertz Sci. Technol., 2(4), pp. 441—448. DOI: https://doi.org/10.1109/TTHZ.2012.2202035

23. Ajito, K., Kim, J.-Y., Ueno, Y., Song, H.-J., Ueda, K., Limwikrant, W., Yamamoto, K., and Moribe, K., 2014. Nondestructive Multicomponent THz Chemical imaging of  Medicine in Tablets. J. Electrochem. Soc., 161(9), pp. B171—B175. DOI: https://doi.org/10.1149/2.0201409jes

24. Fedorov, V.I., Serdyukov, D.S., Cherkasova, O.P., Popova, S.S., and Nemova, E.F., 2017. The influence of terahertz radiation on the cell’s genetic apparatus. J. Opt.  Technol., 84(8), pp. 509—514. DOI: https://doi.org/10.1364/JOT.84.000509

25. Meng, K., Chen, T.-N., Chen, T., Zhu, L.-G., Liu, Q., Li, Z., Li, F., Zhong, S.-C., Li, Z.-R., Feng, H., and Zhao, J.-H., 2014. THz pulsed spectroscopy of paraffin embedded brain glioma. J. Biomed. Opt., 19(7), id. 077001. DOI: https://doi.org/10.1117/1.JBO.19.7.077001

26. Zubkov, A.N., 2005. Millimeter-range radio vision systems. University Bulletin. Radioelectronics, 48(9), pp. 3—16.

27. Honcharuk, N.M., Karushkin, M.F., Malyshko, V.V., Orikhovsky, V.A., 2013. Gallium nitride diode with tunnel injection. Radiophys. Electron., 4(18)(3), pp. 69—78.

28. Oh, S.J., Kang, J., Maeng, I., Suh, J.-S., Huh, Y.-M., Haam, S., Son,J.-H., 2009. Nanoparticle enabled-THz imaging for cancer diagnosis. Opt. Express., 17(5), pp. 3469—3475. DOI: https://doi.org/10.1364/OE.17.003469

29. Betsky, O.V., Kyslov, V.V., Kozmin, A.S., Krenitsky, A.P., Maiborodin, A.V., Tupikin, V.D., 2007. Terahertz waves and their applications. In: 17th Int. Crimean Conf. Microwave & Telecommunication Technology (CriMiCo 2007). Sevastopol, Crimea, Ukraine, 10—14 Sept. 2007. Sevastopol: Veber Publ., pp. 771—773. DOI: https://doi.org/10.1109/CRMICO.2007.4368936

30. Oh, S.J., Choi, J., Maeng, I., Park, J.Y., Lee, K., Huh, Y.M., Suh, J.S., Haam, S., & Son, J.H., 2011. Molecular imaging with THz waves. Opt. Express., 19(5), pp. 4009—4016. DOI: https://doi.org/10.1364/OE.19.004009


Keywords


generator; receiver; frequency multiplier; radio vision; submillimeter range; terahertz range; sensitive element

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)