A STUDY OF DUAL-FREQUENCY METHOD FOR SOLVING THE INTEGRAL SCATTERING EQUATION AT VARIOUS OPERATING WAVELENGTHS

A. M. Linkova, A. V. Dormidontov

Abstract


Subject and Purpose. Remote sensing plays a key role in environmental monitoring. It effectively addresses urgent issues in atmospheric physics and socio-economic activities, such as flight safety and agriculture. In this work, the previously proposed method for solving the inverse problem of dual-frequency sensing in rainfall measurements is further developed, providing a sharper focus on the integral scattering equation solution using regularization techniques as applied to various combinations of operating wavelengths.

Methods and Methodology. Numerical simulations are conducted for dual-frequency sensing at different operating wavelengths, wherein the integral scattering equation is solved using regularization techniques.

Results. The numerical simulation of rain intensity retrieval in the range of up to 30 mm/h was carried out as applied to different operating wavelength pairs, 8.2 mm/ 3.2 cm, 8.2 mm/ 5.5 cm, 8.2 mm/10 cm, and 3.2 mm/10 cm, and considering various calculation errors present in the specific radar cross-section (RCS). Based on the numerical modeling, the most optimal regularization parameter value was determined, and the type of approximation for the free term of the integral equation was selected for each operating wavelength pair. It has been established that the proposed solution approach to the inverse problem of interest is not suitable for the wavelength pair 3.2 mm/10 cm due to excessive errors in rain intensity retrieval. The results for the pairs 8.2 mm/3.2 cm, 8.2 mm/5.5 cm, and 8.2 mm/10 cm are quite similar. However, the 8.2 mm/3.2 cm wavelength pair is distinguished for the smallest retrieval error and therefore best aligns with the proposed approach.

Conclusions. The obtained results evidence that the maximum relative error in rain intensity retrieval does not exceed 35 % for the pair 8.2 mm/5.5 cm and 30 % for the pair 8.2 mm/ 10 cm provided that the rain intensity is higher than 5 mm/h and a relative error in the specific RCS calculation is within ±20 % for both wavelengths. For the same rain intensity over 5 mm/h, the maximum relative error in rain intensity retrieval for the pair 8.2 mm/3.2 cm does not exceed 20 %.

Keywords: inverse problem; rain intensity; regularization

Manuscript submitted 22.05.2025

Radio phys. radio astron. 2025, 30(3): 183-192

REFERENCES

1. Meneghini, R., Liao, L., Iguchi, T., 2022. A Generalized Dual-Frequency Ratio (DFR) Approach for Rain      Retrievals. J. At- mos. Ocean. Technol., 39(9), pp. 1309—1329. DOI: 10.1175/JTECH-D-22-0002.1
    2. Wang, Z., Kou, L., Jiang, Y., Mao, Y., Chu, Z., and Chen, A., 2022. Error Analysis and Modeling of GPM Dual-Frequency Precipitation Radar Near-Surface Rainfall Product. J. Hydrometeorol., 23(2), pp. 153—165. DOI: 10.1175/JHM-D-21-0173.1
    3. Gao, Y., Wu, T., Wang, J., Tang, S., 2021. Evaluation of GPM Dual-Frequency Precipitation Radar (DPR) Rainfall Products Using the Rain Gauge Network over China. J. Hydrometeorol., 22(3), pp. 547—559. DOI: 10.1175/JHM-D-20-0156.1
    4. He, Z., Yang, L., Tian, F., Ni, G., Hou, A., Lu, H., 2017. Intercomparisons of Rainfall Estimates from TRMM and GPM Multisatellite Products over the Upper Mekong River Basin. J. Hydrometeorol., 18(2), pp. 413—430. DOI: 10.1175/JHM- D-16-0198.1
    5. Wang, Y., Zhang, J., Chang, P.-L., Cao, Q., 2015. Radar Vertical Profile of Reflectivity Correction with TRMM Observations Using a Neural Network Approach. J. Hydrometeorol., 16(5), pp. 2230—2247. DOI: 10.1175/JHM-D-14-0136.1
    6. Skofronick-Jackson, G., Petersen, W., Berg, W., Kidd, C., Stocker, E., Kirschbaum, D., Kakar, R., Braun, S., Huffman, G., Ig- uchi, T., Kirstetter, P., Kummerow, C., Meneghini, R., Oki, R., Olson, W., Takayabu, Y., Furukawa, K., and Wilheit, T., 2017. The Global Precipitation Measurement (GPM) Mission for Science and Society. Bull. Am. Meteorol. Soc., 98(8), pp. 1679— 1695. DOI: 10.1175/BAMS-D-15-00306.1
    7. Petracca, M., D’adderio, L.P., Porcù, F., Vulpiani, G., Sebastianelli, S., Puca, S., 2018. Validation of GPM Dual-Frequen- cy Precipitation Radar (DPR) Rainfall Products over Italy. J. Hydrometeorol., 19(5), pp. 907—925. DOI: 10.1175/JHM- D-17-0144.1
    8. Hou, A.Y., Skofronick-Jackson, G., Kummerow, C.D., Shepherd, J.M., 2008. Global precipitation measurement. In: Mi- chaelides, S. ed., 2008. Precipitation: Advances in Measurement, Estimation and Prediction. Springer, Berlin, Heidelberg, pp. 131—169. DOI: 10.1007/978-3-540-77655-0_6
    9. Iguchi, T., Haddad, Z., 2020. Introduction to radar rain retrieval methods. In: V. Levizzani, C. Kidd, D.B. Kirschbaum, C.D. Kummerow, K. Nakamura, F.J. Turk (Eds.), 2020. Satellite Precipitation Measurement. Chapter 10. Springer, pp. 169—182.
    10. Liao, L., Meneghini, R., 2019. Physical Evaluation of GPM DPR Single- and Dual-Wavelength Algorithms. J. Atmos. Ocean. Technol., 36(5), pp. 883—902. DOI: 10.1175/JTECH-D-18-0210.1
    11. Liao, L., Meneghini, R., Tokay, A., 2014. Uncertainties of GPM DPR rain estimates caused by DSD parameterizations. J. Appl. Meteor. Climatol., 53, pp. 2524—2537. DOI: https://doi.org/10.1175/JAMC-D-14-0003.1
    12. Linkova, A., Schuenemann, K., Dormidontov, A., 2020. Double frequency retrieval of rain intensity using solution of the integral equation of scattering. In: 2020 IEEE Ukrainian Microwave Week Proceedings. Kharkiv, Ukraine, 21—25 Sept. 2020, pp. 958—963. DOI: 10.1109/UkrMW49653.2020.9252620
    13. Linkova, A.M., 2021. Influence of the measurement error of the received power on the retrieval of rain intensity by the solu- tion of the integral equation of scattering at double frequency sensing. Radiofiz. Elektron., 26(2), pp. 16—22 (inUkrainian). DOI: 10.15407/rej2021.02.016
    14. Linkova, A.M., 2021. Taking into account the signal attenuation for retrieval of rain intensity by double-frequency sensing.
Radiofiz. Elektron., 26(3), pp. 3—10 (in Ukrainian). DOI: 10.15407/rej2021.03.003
    15. Linkova, A.M. Retrieval of a non-uniform profile of rain intensity by solving the integral scattering equation for dual-fre- quency sensing case study. Radio Phys. Radio Astron. 29(3), pp. 214—221 (in Ukrainian). DOI: 10.15407/rpra29.03.214
    16. Colton, D.L., and Kress, R., 1983. Integral equation methods in scattering theory. New York: Wiley Publ.
    17. Lavrent’ev, M.M, Romanov, V.G, Shishatskii, S.P, 1986. Ill-posed Problems of Mathematical Physics and Analysis. Transla- tions of Mathematical Monographs (V. 64). American Mathematical Soc. Publ.
    18. Tikhonov, A.N, Arsenin, V.Y., 1977. Solutions of ill-posed problems. Washington: V.H. Winston & Sons Publ.


Keywords


inverse problem; rain intensity; regularization



Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)