LARGE-SCALE DISTURBANCES IN THE TERRESTRIAL IONOSPHERE, WHICH ACCOMPANIED THE LAUNCHES AND FLIGHTS OF POWERFUL ROCKETS

L. F. Chernogor

Abstract


Subject and Purpose. The ionosphere is the main channel for the propagation of radio waves. Its condition is determined bythe state of the atmospheric and space weathers, both of which depend on processes on the Sun, in the geospace, and in the Earth’s atmosphere. A serious impact on the state of the atmospheric and the space weather is produced by launches and flights of powerful rockets. The purpose of this paper is to present the results of observations and analyses of the disturbances in the ionosphere that accompanied launches and flights of heavy rockets from various cosmodromes around the world.

Methods and Methodology. In order to monitor disturbances in the ionosphere, a vertical Doppler sounder was used. The radar is able to detect relative disturbances in the electron density about 10–3 to 10–2 per cent over oscillation periods of 102 to 103 s. The beat signal formed by the signal reflected from the ionosphere and the one from the local oscillator were subjected to spectral processing over time intervals of 1 min.

Results. As follows from the observational data, the rocket launch from the Plesetsk cosmodrome (RF) was accompanied by an aperiodic disturbance of electron density, of duration about 20 minutes and speed of 1000 to 1140 m/s. The disturbance with a speed of 450 to 500 m/s was also aperiodic. A quasi-periodic disturbance with a period of 6 to 7 min and speed of 330 to 340 m/s was carried by a long-wave infrasound. The amplitude of the relative disturbance in electron density was δN≈ 1 percent. For atmospheric gravity waves with periods of 20 or 30 min the relative disturbance in electron density was δN≈ 6 to 14 per cent. At the start of the Proton M rocket, three groups of disturbances with speeds of 555, 240 and 170 m/s were observed. In their case, the estimate for δN is 1.5 to 3 per cent. During the rocket launch from the Wenchang (PRC) cosmodrome, three possible groups of disturbances were noted, with speeds of 560, 410 and 270 m/s. In the case of a quasiperiodic disturbance, an estimate for δN is 1.5 per cent. Th e disturbances recorded after the launch of the Falcon 9 rocket are, most likely, not related to the flight of the rocket. The aperiodic disturbances that followed the launch of the Ariane 5 rocket could be associated with the flight of the rocket.

Conclusions. The disturbances that accompanied launches and flights of heavy rockets from several cosmodromes located at distances of 1500 to 2500 km from the observation site have been reliably identified.

Keywords: rocket flight, large-scale disturbance, ionosphere, aperiodic and quasiperiodic disturbance, electron density

Manuscript submitted 02.12.2021

Radio phys. radio astron. 2025, 30(4): 232–249

REFERENCES

1. Booker, H.G., 1961. A local reduction of F region ionization due to missile transit. J. Geophys. Res., 66(4), pp. 1073—1079.

2. Jackson, J.E., Whale, H.A., and Bauer, S.J., 1962. Local ionospheric disturbance created by a burning rocket. J. Geophys. Res., 67(5), pp. 2059—2061. DOI: 10.1029/JZ067i005p02059

3. Mendillo, M., Hawkins, G.S., and Klobuchar, J.A., 1975. A Large-Scale Hole in the Ionosphere Caused by the Launch of Skylab. Science, 187(4174), pp. 343—346. DOI: 10.1126/science.187.4174.343

4. Mendillo, M., Hawkins, G.S., and Klobuchar, J.A., 1975. A sudden vanishing of the ionospheic F region due to the launch of Skylab. J. Geophys. Res., 80(16), pp. 2217—2228. DOI: 10.1029/JA080i016p02217

5. Mendillo, M., 1981. The effect of rocket launches on the ionosphere. Adv. Space Res., 1(2), pp. 275—290. DOI: 10.1016/0273-1177(81)90302-1

6. Zinn, J, Sutherland, C.D., Stone, S.N., Duncan, L.M., and Behnke, R., 1982. Ionospheric eff ects of rocket exhaust products: HEAO-C and Skylab. J. Atmos. Terr. Phys., 44(12), pp. 1143—1171. DOI: 10.1016/0021-9169(82)90025-3

7. Wand, R.H., and Mendillo, M., 1984. Incoherent scatter observations of an artificially modified ionosphere. J. Geophys. Res., 89(A1), pp. 203—215. DOI: 10.1029/JA089iA01p00203 

8. Mendillo, M., Baumgardner, J., Allen, D.P., Foster, J., Holt, J., Ellis, G.R.A.,  Klekociuk, A., and Reber, G., 1987. Spacelab-2 plasma depletion experiments for ionospheric and radio astronomical studies. Science, 238(4831), pp. 1260—1264.
DOI: 10.1126/science.238.4831.1260

9. Mendillo, M., 1988. Ionospheric holes: A review of theory and recent experiments. Adv. Space Res., 8(1), pp. 51—62. DOI: 10.1016/0273-1177(88)90342-0

10. Bernhardt, P.A., Kashiwa, B.A., Tepley, C.A., and Noble, S.T., 1988. Spacelab 2 Upper Atmospheric Modification Experiment Over Arecibo. I — Neutral Gas Dynamics. Astrophys. Lett. Comm., 27(3), pp. 169—181.

11. Bernhardt, P., Swartz, W., Kelly, M., Sulzer, M., and Noble, S.T., 1988. Spacelab 2 Upper Atmospheric Modification Experiment over Arecibo. II — Plasma dynamics. Astrophys. Lett. Comm., 27(3), pp. 183—198.

12. Bernhardt, P.A., Ballenthin, J.O., Baumgardner, J.L., Bhatt, A., Boyd, I.D., Burt, J.M., Caton, R.G., Coster, A., Erickson, P.J., Huba, J.D., Earle, G.D., Kaplan, C.R., Foster, J.C., Groves, K.M., Haaser, R.A., Heelis, R.A., Hunton, D.E., Hysell, D.L.,
Klenzing, J.H., Larsen, M.F., Lind, F.D., Pedersen, T.R., Pfaff, R.F., Stoneback, R.A., Roddy, P.A., Rodriquez, S.P., San Antonio, G.S., Schuck, P.W., Siefring, C.L., Selcher, C.A., Smith, S.M., Talaat, E.R., Thomason, J.F., Tsunoda, R.T., and Varney, R.H., 2012. Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere. IEEE Trans. Plasma Sci., 40(5), pp. 1267—1286. DOI: 10.1109/TPS.2012.2185814

13. Gritchin, A.I., Dorohov, V.L., Kapanin, I.I., Karpachov, A.I., Kostrov, L.S., Leus, S.G., Martynenko, S.I., Mashtaler, N.N., Milovanov, Yu.B., Misyura, V.A., Pakhomova, O.V., Podnos, V.A., Pokhilko, S.N., Protopop, E.N., Rozumenko, V.T., Somov, V.G., Tyrnov, O.F., Fedorenko, V.N., Fedorenko, Yu.P., Tsymbal, A.M., Chernogor, L.F., Chulakov, S.G., Shemet, A.S., 1995. Complex radiophysical investigations of ionospheric disturbances caused by launches and flights of spacecraft. Space Plasma Physics, pp. 161—170. Kyiv: SSAU Publ.

14. Chernogor, L.F., Garmash, K.P., Kostrov, L.S., Rozumenko, V.T., Tyrnov, O.F., and Tsymbal, A.M., 1998. Perturbations in the ionosphere following U.S. powerful space vehicle launching. Radio Phys. Radio Astron., 3(2), pp. 181—190.

15. Kostrov, L.S., Rozumenko, V.T., and Chernogor, L.F., 1999. Doppler Radar Measurements of the Disturbances in the Bottomside Ionosphere, Associated with Space Vehicle Launches and Maneuvering System Burns. Radio Phys. Radio Astron.,
4(3), pp. 227—246.

16. Kostrov, L.S., Rozumenko, V.T., Chernogor, L.F., 2003. HF doppler observations of disturbances in geospace, which accompanied space vehicle launches. Kosm. nauka tehnol., 9(Supplement2), pp. 76—81. DOI: 10.15407/knit2003.02s.076

17. Kostrov, L.S., Rozumenko, V.T., Chernogor, L.F., 2002. Doppler radio sounding of disturbances in the E and F regions of the ionosphere during launches and flights of spacecraft. Kosm. nauka tehnol., 8(Supplement2), pp. 132—143. DOI: 10.15407/
knit2002.02s.132

18. Burmaka, V.P., Kostrov, L.S., and Chernogor, L.F., 2004. Statistics of Signals of the HF Doppler Radar Sensing the Bottomside Ionosphere Disturbed by Rocket Launches and Solar Terminator. Telecommunications and Radio Engeneering, 61(2—6),
pp. 150—177.

19. Burmaka, V.P., Taran, V.I., and Chernogor, L.F., 2003. Results of combined radio physical observations of wave disturbances in geospace which accompanied space vehicle launches and flights. Kosm. nauka tehnol., 9(Supplement2), pp. 57—61.

20. Burmaka, V.P., Taran, V.I., and Chernogor, L.F., 2004. Clustered-Instrument Studies of Ionospheric Wave Disturbances Accompanying Rocket Launches against the Background of Nonstationary Natural Processes. Radio Phys. Radio Astron., 9(1),
pp. 5—28.

21. Burmaka, V.P., Taran, V.I., and Chernogor, L.F., 2004. Radar observations of wave-like disturbances in ionosphere, associated with space vehicle flights. Space Sci. Technol., 10(5—6), pp. 113—117.

22. Burmaka, V.P., Chernogor, L.F., and Tcherniak, Y.V., 2005. Geospace Wave Disturbances Accompanying "Soyuz" and "Proton" Launches and Flights. Radio Phys. Radio Astron., 10(3), pp. 254—272.

23. Burmaka, V.P., and Chernogor, L.F., 2009. Complex Diagnostics of Ionospheric Plasma Disturbed by Far Rocket Launches. Radio Phys. Radio Astron., 14(1), pp. 26—44.

24. Garmash, K.P., Leus, S.G., Chernogor, L.F., and Shamota, M.A., 2009. Geomagnetic pulsations associated with rocket launches from different cosmodromes of the world. Space Sci. Technol., 15(1), pp. 31—43.

25. Zhivolup, T.G., and Chernogor, L.F., 2010. Ionospheric eff ects during rocket "Proton" flight: results of vertical sounding. Space Sci. Technol., 16(3), pp. 15—21.
26. Zhivolup, T.G., and Chernogor, L.F., 2010. Ionospheric Effects During Flights of the Rocket "Soyuz" Under Magnetically Quiet and Magnetically Disturbed Conditions. Space Sci. Technol., 16(3), pp. 22—31.

27. Zhivolup, T.G., and Chernogor, L.F., 2011. Comparative analysis of the disturbances in the ionosphere, caused by rocket launches "Proton" and "Soyuz". The Bulletin of NTU "KhPI". Radio Physics and Ionosphere, 44, pp. 18—26.

28. Chernogor, L.F., and Zhivolup, T.G., 2011. Comparative analysis of ionospheric effects as observed during "Proton" rocket flights under diff erent space weather conditions. Radio Phys. Radio Astron., 3(2), pp. 139—148.

29. Kakinami, Y., Yamamoto, M., Chen, C.-H., Watanabe, S., Lin, C., Liu, J.-Y., and Habu, H, 2013. Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012. J. Geophys. Res. Space Phys., 118(8), pp. 5184—5189. DOI: 10.1002/jgra.50508

30. Lin, C.H., Lin, J.T., Chen, C.H., Liu, J.Y., Sun, Y.Y., Kakinami, Y., Matsumura, M., Chen, W.H., Liu, H., and Rau, R.J., 2014. Ionospheric shock waves triggered by rockets. Ann. Geophys., 32(9), pp. 1145—1152. DOI: 10.5194/angeo-32-1145-2014
31. Ding, F., Wan, W., Mao, T., Wang, M., Ning, B., Zhao, B., and Xiong, B., 2014. Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft. Geophys. Res. Lett., 41(10), pp. 3351—3358.
DOI: 10.1002/2014GL060107

32. Nakashima, Y., and Heki, K., 2014. Ionospheric hole made by the 2012 North Korean rocket observed with a dense GNSS array in Japan. Radio Sci., 49(7), pp. 497—505. DOI: 10.1002/2014RS005413

33. Chernogor, L.F., 2009. Radiophysical and Geomagnetic Effects of Rocket Engine Burn. Monograph. Kharkiv: V.N. Karazin Kharkiv National University Publ.
34. Chernogor, L.F., and Blaunstein, N., 2013. Radiophysical and Geomagnetic Eff ects of Rocket Burn and Launch in the Nearthe-Earth Environment. Boca Raton, London, N. Y.: CRC Press. Taylor & Francis Group.

35. Lin, C.C.H., Shen, M.-H., Chou, M.-Y., Chen, C.-H., Yue, J., Chen, P.-C., and Matsumura, M., 2017. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett., 44(15), pp. 7578—7586.
DOI: 10.1002/2017GL074192

36. Chou, M.-Y., Shen, M.-H., Lin, C.C.H., Yue, J., Chen, C.-H., Liu, J.-Y., and Lin, J.-T, 2018. Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite. Space Weather, 16(2), pp. 172—184.
DOI: 10.1002/2017SW001738

37. Chou, M.-Y., Lin, C.C.H., Shen, M.-H., Yue, J., Huba, J.D., and Chen, C.-H., 2018. Ionospheric Disturbances Triggered by SpaceX Falcon Heavy. Geophys. Res. Lett., 45(13), pp. 6334—6342. DOI: 10.1029/2018GL078088

38. Li, G., Ning, B., Abdu, M.A., Wang, C., Otsuka, Y., Wan, W., Lei, J., Nishioka, M., Tsugawa, T., Hu, L., Yang, G., and Yan, C., 2018. Daytime F-region irregularity triggered by rocket-induced ionospheric hole over low latitude. Prog. Earth Planet.
Sci., 5(1), 11. DOI: 10.1186/s40645-018-0172-y

39. Ssessanga, N., Kim, Y.H., Choi, B., and Chung, J.-K., 2018. The 4D‐var estimation of North Korean rocket exhaust emissions into the ionosphere. J. Geophys. Res. Space Phys., 123(3), pp. 2315—2326. DOI: 10.1002/2017JA024596

40. Zhu, J., Fang, H., Xia, F., Wan, T., and Tan, X., 2019. Numerical Simulation of Ionospheric Disturbance Generated by Ballistic Missile. Adv. Math. Phys., 2019, 7935067. DOI: 10.1155/2019/7935067

41. Savastano, G., Komjathy, A., Shume, E., Vergados, P., Ravanelli, M., Verkhoglyadova, O., Meng, X., and Crespi, M., 2019. Advantages of geostationary satellites for ionospheric anomaly studies: Ionospheric plasma depletion following a rocket launch. Remote Sens., 11(14), 1734. DOI: 10.3390/rs11141734

42. Bowden, G.W., Lorrain, P., and Brown, M., 2020. Numerical Simulation of Ionospheric Depletions Resulting From Rocket Launches Using a General Circulation Model. J. Geophys. Res. Space Phys., 125(6), e2020JA027836.
DOI: 10.1029/2020JA027836

43. Saha, K., De, B. K., Paul, B., and Guha, A., 2020. Satellite launch vehicle effect on the Earth’s lower ionosphere: A case study. Adv. Space Res., 65(11), pp. 2507—2514. DOI: 10.1016/j.asr.2020.02.026

44. Zhu, J., and Fang, H., 2020. Research on the disturbance of ballistic missile to ionosphere by using 3D ray tracing method. Adv. Space Res., 65(3), pp. 933—942. DOI: 10.1016/j.asr.2019.10.028

45. Ma, X., Fang, H., Wang, S., and Chang, S., 2021. Impact of the ionosphere disturbed by rocket plume on OTHR radio wave propagation. Radio Sci., 56(4), e2020RS007183. DOI: 10.1029/2020RS007183

46. Chernogor, L.F., Garmash, K.P., Podnos, V.A., and Tyrnov, O.F., 2013. Th e V.N. Karazin Kharkiv National University Radio Physical Observatory — the tool for ionosphere monitoring in space experiments. Space Project "Ionosat-Micro". Kyiv,
Ukraine: Academperiodika Publ., pp. 160—182.


Keywords


rocket flight; large-scale disturbance; ionosphere; aperiodic and quasiperiodic disturbance; electron density



Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)