SEARCH FOR A COMPACT SCINTILLATING COMPONENT IN SNR 3С58 AT DECAMETER WAVELENGTHS
Abstract
The upper limit for the flux of a compact source of continuum radio emission in SNR 3C58, (2.7 ± 0.9) Jy, was obtained by the highest sensitive observations of interplanetary scintillations at decameter wavelengths. As the sensitivity of observations allows detecting the flux which could be expected at decameter wavelengths for the spectral index α ≈ 2.8 (as at frequencies above 100 MHz) the non-detection of compact source emission is explained by the less value of spectral index at low frequencies (the presence of the cut-off in radio emission spectrum).
Key words: supernova remnant, star remnant, interplanetary scintillation, decameter wavelength range
Manuscript submitted 05.12.2013Radio phys. radio astron. 2014, 19(1): 3-9
REFERENCES
1. WEILER, K. W. and SEIELSTAD, G. A., 1971. Synthesis of the Polarization Properties of 3C 10 and 3C 58 at 1420 and 2880 MHz. Astrophys. J. vol. 163, no. 2, pp. 455–478. DOI: https://doi.org/10.1086/150791
2. VAN DEN BERGH, S., 1978. A systematic search for galactic supernova remnants. Astrophys. J. Suppl. Ser. vol. 38, no. 10, pp. 119–128. DOI: https://doi.org/10.1086/190549
3. BIETENHOLZ, M. F., 2006. Radio Images of 3C 58: Expansion and Motion of Its Wisp. Astrophys. J. vol. 645, no. 2, pp. 1180–1187.
4. STEPHENSON, F. R. and GREEN, D. A., 2002. Historical supernovae and their remnants. Oxford: Clarendon Press. DOI: https://doi.org/10.1093/acprof:oso/9780198507666.001.0001
5. FESEN, R., RUDIE, G., HURFORD, A. and SOTO, A., 2008. Optical Imaging and Spectroscopy of the Galactic Supernova Remnant 3C 58 (G130.7+3.1). Astrophys. J. Suppl. Ser. vol. 174, no. 2, pp. 379–395. DOI: https://doi.org/10.1086/522781
6. MALOFEEV, V. M., MALOV, I. F., MALOV, O. I. and GLUSHAK, A. P., 2003. The radio pulsar J0205+6449 in the supernova remnant 3C 58. Astron. Rep. vol. 47, is. 5, pp. 413–421. DOI: https://doi.org/10.1134/1.1575855
7. CAMILO, F., STAIRS, I. H., LORIMER, D. R., BACKER, D. C., RANSOM, S. M., KLEIN, B., WIELEBINSKI, R., KRAMER, M., MCLAUGHLIN, M. A., ARZOUMANIAN, Z. and MULLER, P., 2002. Discovery of Radio Pulsations from the X-Ray Pulsar J0205+6449 in Supernova Remnant 3C 58 with the Green Bank Telescope. Astrophys. J. vol. 571, no. 1, pp. 41–44. DOI: https://doi.org/10.1086/341178
8. SIDORCHUK, M. A. and ABRAMENKOV, E. A., 2006. Supernova Remnants HB3, 3C58 and IC443 at Decameter Waves. Radio Phys. Radio Astron. vol. 11, no. 2, pp. 134–154 (in Russian).
9. HEWISH, A., SCOTT, P. F. and WILLS, D., 1964. Interplanetary Scintillation of Small Diameter Radio Sources. Nature. vol. 203, is. 4951, pp. 1214–1217.
10. PYNZAR', A. V. and UDAL'TSOV, V. A., 1983. A search for compact galactic radio sources. II. Scintillatig source in supernova remnants. Sov. Astron. vol. 27, is. 3, pp. 286–291.
11. PURVIS, A., TAPPIN, S. J., REES, W. G., HEWISH, A. and DUFFETT-SMITH, P. J., 1987. The Cambridge IPS survey at 81.5 MHz. Mon. Not. R. Astron. Soc. vol. 229, pp. 589–619. DOI: https://doi.org/10.1093/mnras/229.4.589
12. BOVKOON, V. P. and ZHOUCK, I. N., 1981. Spectra of scintillations on inhomogeneities of the ionosphere and interplanetary plasma and the possibility of their separation in the decameter range of radio waves. Doklady AN USSR. vol. А, no. 6, pp. 69–71 (in Russian).
13. KALINICHENKO, N. N., FALKOVICH, I. S., KONOVALENKO, A. A. and BRAZHENKO, A. I., 2013. Separation of Interplanetary and Ionospheric Scintillations of Cosmic Sources at Decameter Wavelengths. Radio Phys. Radio Astron. vol. 18, no. 3, pp. 210–219 (in Russian).
14. BRAUDE, S. Y., MEGN, A. V. and SODIN, L. G., 1978. Decameter wave band radio telescope UTR-2. In: Anteny. Moscow, USSR: Svyaz' Publ. no 26, pp. 3–15 (in Russian).
15. BOVKOON, V. P. and ZHOUCK, I. N., 1981. Scintillations of cosmic radio sources in the decametre waveband. Astrophys. Space Sci. vol. 79, no. 1, pp 165–180. DOI: https://doi.org/10.1007/BF00655914
16. KALINICHENKO, N. N., 2011. Scintillations of Radio Source 4C21.53 at Decameter Wavelengths and Elongations 43°–138°. Radio Phys. Radio Astron. vol. 16, no. 4, pp. 386–390 (in Russian).
17. RYABOV, V. B., VAVRIV, D. M., ZARKA, P., RYABOV, B. P., KOZHIN, R. V., VINOGRADOV, V. V. and DENIS, L., 2010. A low-noise, high-dynamic-range, digital receiver for radio astronomy applications: an efficient solution for observing radio-bursts from Jupiter, the Sun, pulsars, and other astrophysical plasmas below 30 MHz. Astron. Astrophys. vol. 510, id. A16. DOI: 10.1051/0004–6361/20091335
18. MARPL, S. L., 1990. The Digital Spectral Analysis and Its Application. Moscow: Mir Publ. (in Russian).
19. SHISHOV, V. I., 2001. Turbulent interstellar plasma and ultrahigh angular resolution in radio astronomy. Astron. Rep. vol. 45, is. 3, pp. 195–202. DOI: https://doi.org/10.1134/1.1353359
20. DEWEY, R. J., TAYLOR, J. H., WEISBERG, J. M. and STOKES, G. H., 1985. A search for low-luminosity pulsars. Astrophys. J. vol. 294, no. 7, pp. L25–L29. DOI: https://doi.org/10.1086/184502
21. LORIMER, D. R., LYNE, A. G. and CAMILO, F., 1998. A search for pulsars in supernova remnants. Astron. Astrophys. vol. 331, no. 3, pp. 1002–1010.
22. SIEBER, W., 1973. Pulsar spectra: a summary. Astron. Astrophys. vol. 28, pp. 237–252.
23. BOVKUN, V. P., ZHUK, I. N. and SOBOLEV, Ya. M., 1987. The low-frequency, compact source in the Crab Nebula. Sov. Astron. vol. 31, no. 4, pp. 385–388.
24. RANKIN, J. M., COMELLA, J. M., CRAFT, H. D., RICHARDS, D. W., CAMPBELL, D. B. and COUNSELMAN, C. C., 1970. Radio pulse shapes, flux densities, and dispersion of pulsar NP 0532. Astrophys. J. vol. 162, pp. 707–725. DOI: https://doi.org/10.1086/150703
Keywords
Full Text:
PDFCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)