USING THE CONCEPT OF SURFACE IMPEDANCE IN PROBLEMS OF ELECTRODYNAMICS (75 YEARS LATER)

DOI: https://doi.org/10.15407/rpra19.01.057

S. L. Berdnik, D. Y. Penkin, V. A. Katrich, Yu. M. Penkin, M. V. Nesterenko

Abstract


An analytical review of literature related to application of the impedance approach in solving electrodynamic boundary value problems for 75 years since 1938, when M. A. Leontovich had formulated the impedance boundary conditions for electromagnetic fields on a conductive body surface, is here presented. During this period, the impedance approach has been extended to a wide range of electrodynamic problems, where its usage allows to greatly extend the scope of mathematical modelling, which adequately takes into account physical properties of real boundary surfaces. Therefore, it should be important to systematize the experience of many authors concerning this approach. The limits and conditions for correct usage of the impedance boundary conditions are analyzed, too. Metal-dielectric structures with known theoretical values of surface impedance are also presented. Special attention is paid to the characteristics of film structures and thin impedance vibrators.

Key words: impedance approach, impedance type boundary condition, surface impedance, effective impedance, impedance surface

Manuscript submitted 05.12.2013

Radio phys. radio astron. 2014, 19(1): 57-80

REFERENCES

1. 1973–1982. The Great Soviet Encyclopedia: A Translation of the Third Edition of the Bol'shaya Sovetskaya Entsiklopediya. New York, London: Macmillan, Collier-Macmillan.

2. RYTOV, S. M., 1940. Calculation of skin effect by perturbation method. Zh. Eksp. Teor. Fiz. vol. 10, is. 2, pp. 180–190 (in Russian).

3. LEONTOVICH, M. A., 1948. On the Approximate Boundary Conditions for Electromagnetic Field on the Surface of Highly Conducting Bodies. In: Propagation of electromagnetic waves. II. Moscow-Leningrad, USSR: USSR Academy of Sciences Publ. (in Russian).

4. LEONTOVICH, M. A., 1985. Selected Papers. Theoretical Physics. Moscow, USSR: Nauka Publ. (in Russian).

5.  SHCHUKIN, A. N., 1940. Propagation of Radio Waves. Moscow, USSR: Svyaz'izdat Publ. (in Russian).

6.  MILLER, M. A. and TALANOV, V. I., 1961. The use of the notion of the surface impedance in the theory of surface electromagnetic waves. Izv. Vyssh. Uchebn. Zaved. Radiofiz. vol. 4, no. 5, pp. 795–830 (in Russian).

7. ILYINSKY, A. S. and SLEPYAN, G. Ya., 1990. Impedance boundary conditions and their application for numerical analysis of the electromagnetic waves absorption in conducting media. Radiotekhnika i Electronika. vol. 35, no. 6, pp 1121–1135 (in Russian).

8. ILYINSKY, A. S., KRAVTSOV, V. V. and SVESHNIKOV, A. G., 1991. Mathematical models of electrodynamics. Moscow, USSR: Vysshaya shkola Publ. (in Russian).

9. PROKHOROV, A. V., ed., 1988–1998. Encyclopedia of physics: volumes 1–5. Moscow, Russia: Sovetskaya encyclopedia Publ. (in Russian).

10.  FELD, YA. N., 1968. Basic equations, uniqueness theorem, and boundary value problems of electrodynamics. In: First All-Union Symp. on Wave Diffraction and Propagation Proceedings. Moscow-Kharkov, USSR: VIRTA Publ., pp. 93–109.

11. FEINBERG,  E. L., 1999. Propagation of Radio Waves along the Earth's Surface. Moscow, Russia: Fizmatlit Publ.

12.  SENIOR, T. B. A. and VOLAKIS, J. L., 1995. Approximate boundary conditions in electromagnetics. London: IEE Publ.

13.  HOPPE, D. J. and RAHMAT-SAMII, Y., 1995. Impedance boundary conditions in electromagnetics. Washington, D.C.: Taylor and Fransic Publ.

14.  YUFEREV, S. V. and IDA, N., 2009. Surface impedance boundary conditions. A comprehensive approach. Boca Raton, FL: CRC Press. DOI: https://doi.org/10.1201/9781420044904

15.  TRETYAKOV, S., 2003. Analytical Modeling in Applied Electromagnetics. Norwood, MA: Artech House.

16. BEL'KOVICH, I. V., ZHEKSENOV, M. A. and KOZLOV, D. A., 2011. The comparison of impedance boundary conditions variants in case of plane electromagnetic wave incidence on dielectric halfspace. Zhurnal Radioelektroniki. no. 7, id. 042110014/0047 (in Russian).

17.  BREKHOVSKIKH, L. M., 1980. Waves in the Layered Media. New York, NY: Academic Press.

18. AL'SHITS, V. I. and LYUBIMOV, V. N., 2009. Generalization of the Leontovich approximation for electromagnetic fields on a dielectric–metal interface. Phys. Usp. vol. 52, no. 8, pp. 815–820. DOI: https://doi.org/10.3367/UFNe.0179.200908d.0865

19. VAINSHTEIN,  L. A., 1988. Electromagnetic waves. Moscow, Russia: Radio i Svyaz' Publ. (in Russian).

20.  MENDE, F. F. and SPITSIN, A. I., 1985. Surface Impedance of Superconductors. Kiev, Ukraine: Naukova Dumka Publ. (in Russian).

21. RAMO, S. and WINNERY,  J., 1945. Fields and waves in modern radio. New York, NY: J. Wiley & Sons, Inc.

22. ALEKSANDROV, B. N., RYBAL'CHENKO, L. F. and DUKIN, V. V., 1970. The zone-refining of impure copper. Izv. Akad. Nauk SSSR, Metally. no. 4, pp. 68–75 (in Russian).

23.  REUTER, G. E. H. and SONDHEIMER, E. H., 1948. The theory of anomalous skin effect in metals. Proc. Roy. Soc. London, Ser. A. vol. 195, no. 1042, pp. 336–364. DOI: https://doi.org/10.1098/rspa.1948.0123

24. CHAMBERS, R. S., 1952. The anomalous skin effect. Proc. Roy. Soc. London, Ser. A. vol. 215, no. 1123, pp. 281–292. DOI:
https://doi.org/10.1098/rspa.1952.0226

25.  HARTMANN, L. E. and LUTTSNGER, J. M., 1966. Exact solution of the integral equations for the anomalous skin effect and cyclotron resonance sn metal. Phys. Rev. vol. 151, no. 2, pp. 430–433. DOI: https://doi.org/10.1103/PhysRev.151.430

26.  MEISSNER, W. and OCHSENFELD, R., 1933. Ein neuer Effekt bei Eintritt der Supraleitfaig-keit. Naturwissenchaften B. vol. 33, no. 44, pp. 787–788. DOI: https://doi.org/10.1007/BF01504252

27. BARDEEN, J., COOPER, L. N. and SCHIEFFER,  J. R., 1957. Theory of superconductivity. Phys. Rev. vol. 108, no. 5, pp. 1175–1204. DOI: https://doi.org/10.1103/PhysRev.108.1175

28. COOPER, L. N., 1956. Bound electron pairs in a degenerate Fermi gas. Phys. Rev. vol. 108, no. 4, pp. 1189–1190. DOI: https://doi.org/10.1103/PhysRev.104.1189

29. HALBRITTER, J. 1969. On the surface impedance of superconductors. PhD thesis ed. University of Karlsruhe (in German).

30. KRAVCHENKO,  V. F., 2006. Electrodynamics of superconducting structures. Theory, algorithms and methods of calculations. Moscow, Russia: FIZMATLIT Publ. (in Russian).

31. ALLISON, J. and BENSON,  F. A., 1955. Surface roughness and attenuation of precision-drawn, chemically polished, electro-polished, electroplated and electro-formed waveguides. Proc. IEE. vol. 102, no. 1, pp. 251–259.

32.  BASS, F. G., and  FUKS, I. M., 1979. Wave scattering from statistically rough surfaces. Oxford: Pergamon Press.

33. MENDE, F. F., SPITSIN, A. I., TERESHCHENKO, N. A., and RUDNEV, O. E., 1977. Measuring Absolute Value of Reactive Surface-Resistance and Depth of Field Penetration into Super-Conducting Lead. Zh. Tekh. Fiz. vol. 47, is. 9, pp. 1916–1923 (in Russian).

34. NEGANOV, V. A., NEFEDOV, E. I. and YAROVOY, G. P., 1998. Modern methods of design of transmission lines and VHF and UHF resonators. Moscow, Russia: Pedagogika-Press Publ. (in Russian).

35.  ILYINSKY, A. S. and SLEPYAN, G. Ya., 1983. Oscillations and waves in electrodynamic systems with dissipation. Moscow, USSR: Moscow State University Publ. (in Russian).

36. ILYINSKY, A. S., SLEPYAN, G. YA. and SLEPYAN, A. Ya., 1993. Propagation, scattering and dissipation of electromagnetic waves. Stevenage, England: Peregrinus on behalf of the Institution of Electrical Engineers.

37. KARPOVICH, V. A., RODIONOVA, V. N. and SLEPYAN, G. Ya, 2002. High-Q Comb-Drive Microwave Resonators. Radiotekhnika i Elektronika. vol. 47, no. 5, pp. 570–574 (in Russian).

38. KAZANSKY, V. B., TUZ, V. R. and KHARDIKOV, V. V., 2006. Cascade of Axial-Symmetric Inhomogeneous Resonators with Impedance Sidewalls. Radio Phys. Radio. Astron. vol. 11, no. 2, pp. 159–168 (in Russian).

39. EFREMOV, V. N., 2009. Mapping and monitoring the condition of ice-rich frozen ground by radio wave impedance sounding. Nauka i obrazovanie. no. 4, pp. 81–85 (in Russian).

40. HEYMSFIELD, S. B., LOHMAN, T. G., WANG, Z. and GOING, S. B., eds. 2005. Human body composition, 2nd ed. Champaign, IL: Human Kinetics.

41. YOSHITOMI, K., 2001. Radiation from a Slot in an Impedance Surface. IEEE Trans. Antennas Propag. vol. 49, no. 10, pp. 1370–1376. DOI: https://doi.org/10.1109/8.954925

42. NESTERENKO, M. V., KATRICH, V. A., PENKIN, YU. M. and BERDNIK,  S. L., 2008. Analytical and Hybrid Methods in the Theory of Slot-Hole Coupling of Electrodynamic Volumes. New York: Springer Science+Business Media. DOI: https://doi.org/10.1007/978-0-387-76362-0

43. TICHENER, J. B. and WILLIS, S. R., 1991. The reflection electromagnetic waves form stratified anisotropic media. IEEE Trans. Antennas Propag. vol. 39, no. 1, pp. 35–40. https://doi.org/10.1109/8.64432

44. BAGATSKAYA, O. V. SHULGA, S. N., 2001. Impedance-based approach to the solution of the problem of reflection of a plane electromagnetic wave from a multilayer uniaxial magneto-dielectric slab. Visn. Khark. Nats. Univ. Radiofizyka ta Electronika. No. 513, pp. 25–31 (in Russian).

45. LERER, A. M., 1991. The application of the Impedance Type Boundary Conditions to Parameter Calculation for Disc-Shaped Dielectric Resonators. Radiotekhnika i Elektronika. vol. 36, no. 10, pp. 1923–1930 (in Russian).

46. PENKIN, D., YAROVOY, A. and JANSSEN, G., 2012. Surface impedance model for nano-scale device communications over an interface.In: Proceedings. of the IEEE 19th Symposium on Communications and Vehicular Technology in the Benelux (SCVT). Eindhoven, Netherlands. pp. 1–5. DOI: https://doi.org/10.1109/scvt.2012.6399408

47. KING, R. and SMITH, G., 1984. Antennas in matter. Moscow, USSR: Mir Publ. (in Russian).

48. SHESTOPALOV, V. P., LITVINENKO, L. N., MASALOV, S. A. and SOLOGUB, V. G., 1973. Wave Diffraction by Gratings. Kharkiv, Ukraine: Kharkiv State Univ. Publ.

49. LITVINENKO, L. N. and PROSVIRNIN, S. L., 1984. Spectral Scattering Operators in the Problem of Wave Diffraction by Plane Screen. Kyiv, Ukraine; Naukova Dumka Publ.

50. SHESTOPALOV, V. P., KIRILENKO, A. A., MASALOV, S. A. and SIRENKO, YU. K., 1986. Resonant Scattering of Waves. 1. Diffraction Gratings. Kyiv, Ukraine; Naukova Dumka Publ.

51. LERER, A. M. and YACHMENOV, A. A., 2004. Mathematical Simulation of Dielectric Gratings Using Impedance Boundary Conditions. Radiotekhnica i Elektronika. vol. 49, no. 4, pp. 445–449 (in Russian).

52. LERER, A. M., MAKHNO, V. V. and YACHMENOV, A. A., 2006. Mathematical Simulation of Eigenmodes Propagation in Cylindrical Gratings Using Impedance Boundary Conditions. Radiotekhnica i Elektronika. vol. 51, no. 1, pp. 46–53 (in Russian).

53.  PETIT, R., ed., 1980. Electromagnetic Theory of Grating. Berlin, Heidelberg, New York: Springer-Verlag.

54. WU, T. K., ed., 2000. Frequency Selective Surfaces. New York: John Wiley.

55. GRIBOVSKY. A. V. and PROSVIRNIN, S. L., 2005. Frequency-Selective Properties of a Multi-Element Screen with Rectangular Waveguide Channels. Telecommun. Radio Eng. vol. 63, is. 2, pp. 119–130. DOI: https://doi.org/10.1615/TelecomRadEng.v63.i2.30

56. KIRILENKO, A. A., PEROV, A. O. and SENKEVICH, S. L., 2009. Resonant Properties of Perforated Screen with Two Circular Below-Cutoff Holles of Different Diemeter in Periodoc Cell. Radio Phys. Radio Astron. vol. 14, no. 1, pp. 45–57 (in Russian).

57.  KIRILENKO, A. A., PEROV, A. O., 2007. To the Nature of Resonant Properties of Double-Periodic Screen with Below-Cutoff Holles. Radiofizika i Elektronika. vol. 12, no. 3, pp. 489–497 (in Russian).

58. KIRILENKO, A. A. and MOSPAN, L. P., 2011. Reflective Grating of Perforated Strips as a Frequency-Selective Surface. Radio Phys. Radio Astron. vol. 16, no. 1, pp. 90–97 (in Russian).

59. BELOV, P. A. and TRETYAKOV, S. A., 2002. Resonant reflection from dipole arrays located very near to conducting planes. J. Electromagn. Waves Appl. vol. 16, no. 1, pp. 129–143. DOI: https://doi.org/10.1163/156939302X01380

60. MLADYONOV, P. L. and PROSVIRNIN, S. L., 2002. Microstrip Double-Periodic Grating of Continuous Curvilinear Metal Strips as a High-Impedance Surface. Radio Phys. Radio Astron. vol. 8, no. 4, pp. 375–382 (in Russian).

61. SYDORCHUK, N. V., and YACHIN, V. V., 2005. Electromagnetic Wave Scattering by a Double-Periodic Magnetodielectric Layer. Radio Phys. Radio Astron. vol. 10, no. 1, pp. 50–61 (in Russian).

62. SYDORCHUK, N. V., YACHIN, V. V. and PROSVIRNIN, S. L., 2003. Low-Frequency Approximation for the Problem of Electromagnetic Wave Propagation in a Doubly-Periodic Magnetodielectric Layer. Telecommun. Radio Eng. vol. 59, is. 5-6, pp. 52–59. DOI: https://doi.org/10.1615/TelecomRadEng.v59.i5-6.40

63. SYDORCHUK, N. V., YACHIN, V. V. and PROSVIRNIN,  V. K., 2009. Quasi-Optical Approximation for Plane Wave Scattering by Two-Periodical Gyrotripic Layer. Radio Phys. Radio Astron. vol. 14, no. 2, pp. 174–182 (in Russian).

64. SHEVCHENKO, V. V., 1998. Chiral Electromagnetic Objects and Media. Sorosovskii Obrazovatel'nyi Zhurnal. no. 2, pp. 109–114 (in Russian).

65. LINDELL, I. V., SIHVOLA, A. H., TRETYAKOV, S. A. and VIITANEN,  A. J., 1994. Electromagnetic waves in chiral and bi-isotropic media. London: Artech House.

66. KATSELENBAUM, B. Z., KORSHUNOVA, E, N., SIVOV, A. N. and SHATROV,  A. D., 1997. Chiral electromagnetic objects. Uspekhi Fizicheskikh Nauk.vol. 167, no. 11, pp. 1201–1212 (in Russian). DOI:
https://doi.org/10.3367/UFNr.0167.199711c.1201

67. LAKHTAKIA, A., VARADAN, V. K. and VARADAN, V. V., 1989. Timeharmonic electromagnetic fields in chiral media. Lecture Notes in Physics. Berlin, Heidelberg, Boston: Springer Verlag.

68. TRET'YAKOV, S. A., 1994. Electrodynamics of complex media: chiral, biisotropic, and some bianisotropic materials. Radiotekhnika i Elektronika. vol. 39, no. 10, pp. 1457–1470 (in Russian).

69. NEGANOV, V. A. and OSIPOV, O, V., 2006. Reflecting, waveguiding and radiating structures with chiral elements. Moscow: Radio i Svyaz' Publ.

70. LAKHTAKIA, A., VARADAN, V. V. and VARADAN, V. K., 1985. Scattering and absorption characteristics of lossy dielectric, chiral, nonspherical objects. Appl. Opt. vol. 24, no. 23, pp. 4146–4154. DOI: https://doi.org/10.1364/AO.24.004146

71. LAKHTAKIA, A., VARADAN, V. V. and VARADAN, V. K., 1988. Field equations, Huygens's principle, integral equations, and theorems for radiation and scattering of electromagnetic waves in isotropic chiral media. J. Opt. Soc. Am. vol. 5, no. 2, pp. 175–184. DOI: https://doi.org/10.1364/JOSAA.5.000175

72. SHEVCHENKO, V. V., 1995. Diffraction on a small chiral particle. Radiotekhnika i Elektronika. vol. 40, no. 12, pp. 1777–1788 (in Russian).

73. TRETYAKOV, S. A. and MARIOTTE, F., 1995. Maxwell Garnett modeling of uniaxial chiral composites with bianisotropic inclusions. J. Electromagn. Waves Appl. vol. 9, no. 7/8, pp. 1011–1025. DOI: https://doi.org/10.1163/156939395X00695

74. PROSVIRNIN,  S. L., 1999. Transformation of polarization when waves are reflected by a microstrip array made of complex-shaped elements. Radiotekhnika i Elektronika. vol. 44, no. 6, pp. 681–686 (in Russian).

75.  PROSVIRNIN, S. L., 1998. Analysis of electromagnetic wave scattering by plane periodical array of chiral strip elements. In: Proceedings of 7-th International Conference on Complex Media "Bianisotropic-98". Braunschweig, Germany, 3-6 June 1998, pp. 185–188.

76. ARNAUT, L. R., 1997. Mutual coupling in arrays of planar chiral structures. In: A. PRIOU, A. SIHVOLA, S. TRETYAKOV, A. VINOGRADOV, eds. Advances in Complex Electromagnetic Materials. Dordrecht–Boston–London: Kluwer Academic Publ. vol. 28, pp. 293–309. DOI: https://doi.org/10.1007/978-94-011-5734-6_26

77. JAGGARD, D., ENGHETA, N., KOWARZ, M. W., PELET, P., LIU J. C. and KIM, Y., 1989. Periodic chiral structures. IEEE Trans. Antennas Propag. vol. 37, no. 11, pp. 1447–1452. DOI: https://doi.org/10.1109/8.43564

78. VASIL'EVA, T. D. and PROSVIRNIN, S. L., 1998. Electromagnetic wave diffraction by the plane array of chiral strip elements of complex shape. Fizika Volnovyh Protsessov i Radiotekhnicheskie Sistemy. vol. 1, no. 4, pp. 5–9 (in Russian).

79. PROSVIRNIN, S. L. and ZHELUDEV, N. I., 2005. Polarization effects in the diffraction of light by a planar chiral structure. Phys. Rev. E. vol. 71, is. 3, id. 37603.

80. OSIPOV, O. V. and PANFEROVA, T. A., 2010. Approximate boundary conditions for thin chiral layers with curvilinear surfaces. J. Commun. Technol. Electron. vol. 55, no. 5, pp. 532–534. DOI: https://doi.org/10.1134/S1064226910050086

81. VOLOBUEV, A. N., OSIPOV, O. V. and PANFEROVA, T. A., 2011. Method for determining the chirality parameters of artificial chiral media. RU. Pat. 2418292 (in Russian).

82. NESTERENKO, M. V., KATRICH, V. A., PENKIN, Y. M., DAKHOV, V. M. and BERDNIK, S. L., 2011. Thin Impedance Vibrators. Theory and Applications. New York: Springer Science+Business Media. DOI: https://doi.org/10.1007/978-1-4419-7850-9

83. KING, R. W. P. and WU, T., 1966. The imperfectly conducting cylindrical transmitting antenna. IEEE Trans. Antennas Propag. vol. 14, is. 5, pp. 524–534.

84. HANSON, G. W., 2008. Radiation efficiency of nano-radius dipole antennas in the microwave and far-infrared regimes. IEEE Antennas. Propag. Mag. vol. 50, is. 3, pp. 66–77.

85. HANSON, G. W., 2005. Fundamental Transmitting Properties of Carbon Nanotube Antennas. IEEE Trans. Antennas Propag. vol. 53, is. 11, pp. 3426–3435.

86. SLEPYAN, G. YA., SHUBA, M. V., MAKSIMENKO, S. A. and LAKHTAKIA,  A., 2006. Theory of optical scattering by achiral carbon nanotubes, and their potential as optical nanoantennas. Phys. Rev. B. vol. 73, is. 19, id. 195416.

87. POTAPOV, A. A., 2005. Fractals in Radiophysics and Radiolocation: Sample Topology. Moscow, Russia: Universitetskaya Kniga Publ. (in Russian).

88. PYATAKOV, A. P. and ZVEZDIN, A. K., 2012. Magnetoelectric and multiferroic media. vol. 55, no. 6, pp. 557–581. DOI:  https://doi.org/10.3367/UFNe.0182.201206b.0593

89. SHALASHOV, A. G. and GOSPODCHIKOV, E. D., 2011. Impedance technique for modeling electromagnetic wave propagation in anisotropic and gyrotropic media. Phys.–Usp. vol. 54, no. 2, pp. 145–165. DOI: https://doi.org/10.3367/UFNe.0181.201102c.0151

90. KLYATSKIN, V. I., 1986. The Imbedding Method in Wave Propagation. Theory. Moscow, Russia: Nauka Publ. (in Russian).

91. VARDAXOGLOU,  J. C., 1997. Frequency Selective Surfaces: Analysis and Design. Taunton, England: Research Studies Press.

92. Munk, B. A., 2000. Frequency Selective Surfaces: Theory and Design. New York: John Wiley. DOI: https://doi.org/10.1002/0471723770

93. NEFEDOV, E. I. and SIVOV, A. N., 1977. Electrodinamics of periodic structures. Moscow, Russia: Nauka Publ. (in Russian).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Keywords


impedance approach; impedance type boundary condition; surface impedance; effective impedance; impedance surface

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)