THE H-POLARIZED ELECTROMAGNETIC WAVE DIFFRACTION BY MULTI-ELEMENT PLANE SEMI-INFINITE GRATING

DOI: https://doi.org/10.15407/rpra19.04.348

M. E. Kaliberda, L. M. Lytvynenko, S. A. Pogarsky

Abstract


The H-polarized wave diffraction by multi-element plane semiinfinite periodic strip grating is considered. The problem is reduced to a nonlinear operator equation with respect to the unknown reflection operator of a structure. The equation is obtained as a result of solution of the auxiliary problem – wave diffraction by semi-infinite periodic venetian blind-type grating with the strips placed in parallel planes. The dependences of the reflection coefficient of plane waves are presented for one, two, three and four strips per period and for the near and far fields are calculated.

Key words:plane semi-infinite grating, Venetian blind type semi-infinite grating, operator method, relaxation method

Manuscript submitted 02.07.2014

Radio phys. radio astron.  2014, 19(4): 348-357

REFERENCES

1. FEL'D, Y. N., 1958. Electromagnetic wave diffractionby semi-infinite grating. Radiotekhnika i Elektronika, vol.13, no. 7, pp. 882–889 (in Russian).

2. FEL'D, Y. N., 1955. On infinite systems of linear algebraicequations connected with problems on semi-infinite periodicstructures. Doklady AN USSR, vol. 102, no. 2, pp. 257–260 (in Russian).

3. HILLS, N. L. and KARP, S. N., 1965. Semi-infinite diffractiongratings. I. Commun. Pure Appl. Math., vol. 18, no. 1/2, pp. 203–233.

4. HILLS, N. L., 1965. Semi-infinite diffraction gratings. II. Inward resonance. Commun. Pure Appl. Math., vol. 18, no. 3, pp. 385–395.

5. WASYLKIWSKYJ, W., 1973. Mutual coupling effects insemi-infinite arrays. IEEE Trans. Antennas Propag., vol. 21,no. 3, pp. 277–285. DOI: https://doi.org/10.1109/TAP.1973.1140507

6. LINTON, C. M. and MARTIN, P. A., 2004. Semi-infinitearrays of isotropic point-scatterers. A unified approach.SIAM J. Appl. Math., vol. 64, pp. 1035–1056. DOI: https://doi.org/10.1137/S0036139903427891

7. LINTON, C. M., PORTER, R. and THOMPSON, I., 2007. Scattering by a semi-infinite periodic array and theexcitation of surface waves. SIAM J. Appl. Math., vol. 67, no. 5, pp. 1233–1258. DOI: https://doi.org/10.1137/060672662

8. CAPOLINO, F. and ALBANI, M., 2009. Truncation effectsin a semi-infinite periodic array of thin strips: A discreteWiener-Hopf formulation. Radio Sci., vol. 44, pp. 1223–1234. DOI: https://doi.org/10.1029/2007RS003821

9. NISHIMOTO, M. and IKUNO, H., 1999. Analysis ofelectromagnetic wave diffraction by a semi-infinite stripgrating and evaluation of end-effects. Progr. Electromagn. Res. (PIER), vol. 23, pp. 39–58. DOI: https://doi.org/10.1163/156939399X01177

10. CAMINITA, F., NANNETTI, M. and MACI, S., 2008. An efficient approach to the solution of a semi-infinitestrip grating printed on infinite grounded slab excited by asurface wave. In: XXIX URSI General Assembly. Chicago, IL, August 7-13, 2008, BPS 2.5.

11. NEPA, P., MANARA, G. and ARMOGIDA, A., 2005. EM scattering from the edge of a semi-infinite planar stripgrating using approximate boundary conditions. IEEE Trans. Antennas Propag. vol. 53, no. 1, pp. 82–90. DOI: https://doi.org/10.1109/TAP.2004.840523

12. LYTVYNENKO, L. M., REZNIK, I. I. and LYTVYNENKO, D. L., 1991. Wave scattering by semi-infinite periodic structure. Doklady AN Ukr. SSR. no. 6, pp. 62–67 (in Russian).

13. LYTVYNENKO, L. M. and PROSVIRNIN, S. L., 2012. Wave Diffraction by Periodic Multilayer Structures. Cambridge: Cambridge Scientific Publishers.

14. KALIBERDA, M. E., LITVINENKO, L. N. and POGARSKII, S. A., 2009. Operator method in the analysis ofelectromagnetic wave diffraction by planar screens. J. Commun. Technol. Electron., vol. 54, no. 9, pp. 975–981.DOI: https://doi.org/10.1134/S1064226909090010

15. KALIBERDA, M. E., LYTVYNENKO, L. N. and POGARSKY, S. A., 2011. Electrodynamic characteristics ofmultilayered system of plane screens with a slot. Radio Phys. Radio Astron. vol. 2, no. 4. pp. 339–344.

16. LYTVYNENKO, L. M., KALIBERDA, M. E. and POGARSKY,S. A., 2012. Solution of waves transformation problem in axially symmetric structures. Frequenz., vol. 66, no. 1-2, pp. 17–25. DOI: https://doi.org/10.1515/freq.2012.012

17. LYTVYNENKO, L. M., KALIBERDA, M. E. and POGARSKY, S. A., 2013. Wave diffraction by semi-infinite venetian blind type grating. IEEE Trans. Antennas Propag., vol. 61, no. 12, pp. 6120–6127. DOI: https://doi.org/10.1109/TAP.2013.2281510

18. VOROBYOV, S. N. and LYTVYNENKO, L. M., 2011. Electromagnetic wave diffraction by semi-infinite stripgrating. IEEE Trans. Antennas Propag., vol. 59, no. 6,pp. 2169–2177. DOI: https://doi.org/10.1109/TAP.2011.2143655

19. FELSEN, L. B. and MARCUVITZ, N., 1973. Radiationand Scattering of Waves. Englewood Cliffs, NJ: Prentice-Hall.

20. MESZMER, P., 2010. Hierarchical quadrature for multidimen sionalsingular integrals. J. Numer. Math. vol. 18, no. 2, pp. 91–117.

21. MESZMER, P., 2014. Hierarchical quadrature for multidimensional singular integrals – Part II. J. Numer. Math, vol. 22, no. 1, pp. 33–60. DOI: https://doi.org/10.1515/jnum-2014-0002

22. LIFANOV, I. K., 1995. The method of singular integral equations and numerical experiment (in mathematical physics, aerodynamics, theory of elasticity and diffraction of waves). Moscow: Yanus Publ.

23. NOSICH, A. A. and GANDEL, Y. V., 2007. Numerical Analysis of Quasioptical Multireflector Antennas in 2-D with the Method of Discrete Singularities: E-Wave Case. IEEE Trans. Antennas Propag. vol. 55, no. 2, pp. 399–406. DOI: https://doi.org/10.1109/TAP.2006.889811

24. MITTRA, R. and S. W. LEE, 1974. Analytical Techniques in the Theory of Guided Waves. Moscow: Myr Publ. (in Russian).

25. ORTEGA, J. M. and RHEINBOLDT, W. C., 1970. Iterative Solution of Nonlinear Equations in Several Variables. New York: Academic Press. DOI: https://doi.org/10.1137/1.9780898719468

26. SHESTOPALOVOV, V. P., LYTVYNENKO, L. N., MASALOV, P. and SOLOGUB, V. G., 1973. Diffraction of waves on gratings. Kharkiv: Univer. Publ. (in Russian).  

 

 


Keywords


plane semi-infinite grating; Venetian blind type semi-infinite grating; operator method; relaxation method

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)