HIGH-PRECISION MICROWAVE SPECTROMETER WITH SUB-DOPPLER SPECTRAL RESOLUTION

DOI: https://doi.org/10.15407/rpra19.04.364

E. A. Alekseev, V. V. Ilyushin, A. A. Mescheryakov

Abstract


Results of improvement of the automated millimeter-wave spectrometer
of the Institute of Radio Astronomy NAS–Ukraine aimed at reaching a sub-Doppler resolution on the basis of the Lamb-dip observation are presented. Some hardware solutions of the improvement and some results of investigation of the methanol CH3OH molecule rotational spectrum are discussed. Measured value of the Lamb-dip width of 10 kHz for J=1←0 transition of CO molecule agrees well with the broadening caused by collisions with cell walls. This value corresponds to improvement of spectral resolution by an order of magnitude. Results of investigation of the methanol spectrum confirm the anomalous hyperfine structure for a number of transitions.

Key words: radiospectrometer, sub-Doppler spectral resolution, Lamb dip, direct digital synthesizer

Manuscript submitted 06.11.2014

Radio phys. radio astron. 2014, 19(4): 364-374 

REFERENCES

1. BAGDONAITE, J., JANSEN, P., HENKEL, C., BETHLEM, H. L., MENTEN, K. M. and UBACHS, W., 2013. A Stringent Limit on a Drifitng Proton-to-Electron Mass Ratio from Alcohol in the Early Universe. Science. vol. 339, no. 6115, pp. 46–48.

2. KOZLOV, M. G., LAPINOV, A. V. and LEVSHAKOV, S.A., 2010. Sensitivity of microwave spectra of deuterated ammonia to the variation of the electron-to-proton mass. J. Phys. B: At. Mol. Opt. Phys. vol.43, no 7, id. 074003. DOI: https://doi.org/10.1088/0953-4075/43/7/074003

3. LEVSHAKOV, S. A., MOLARO, P., LAPINOV, A. V., REIMERS, D., HENKEL, C. and SAKAI, T., 2010. Searching for chameleon-like scalar fields with the ammonia method. Astron. Astrophys. vol. 512, no. 7, id. A44. DOI: https://doi.org/10.1051/0004-6361/200913007

4. JANSEN, P., XU, L.-H., KLEINER, I., UBACHS, W. and BETHLEM, H. L., 2011. Methanol as a Sensitive Probe for Spatial and Temporal Variations of the Proton-to-Electron Mass. Phys. Rev. Lett. vol. 106, Is. 10, id. 100801.DOI: https://doi.org/ 10.1103/PhysRevLett.106.100801

5. JANSEN, P., KLEINER, I., XU, L.-H. and BETHLEM, H. L. Sensitivity of transitions in internal rotor molecules to a possible variation of the proton-to-electron mass ratio. Phys. Rev. A. vol. 84, Is. 6, id. 062505. DOI: https://doi.org/10.1103/PhysRevA.84.062505

6. CAZZOLI, G., PUZZARINI, C. and LAPINOV, A.V., 2004. Precise laboratory frequencies for the J ← J–1 (J=1, 2, 3, 4) rotational transitions of 13CO. Astrophys. J. vol. 611, no. 2, pp. 615–620. DOI: https://doi.org/10.1086/421992

7. CAZZOLI G., PUZZARINI C., and LAPINOV A. V., 2003. Precise laboratory frequencies for the J=1–0 and J= 2–1 rotational transitions of C18O. Astrophys. J. Lett. vol. 592, no. 2,pp. L95–L98. DOI: https://doi.org/10.1086/377527

8. CASELLI, P. and DORE, L., 2005. Laboratory and space spectroscopyof DCO+. Astron. Astrophys. vol. 433, no. 3,pp. 1145–1152. DOI: https://doi.org/10.1051/0004-6361:20042118

9. LAPINOV, A.V., LEVSHAKOV, S. A., KOZLOV, M. G., GOLUBIATNIKOV, G. Yu., BELOV, S. P., ANDRIYANOV, A. F., SHKAEV A. P., AGAFONOVA, I. I., and ZINCHENKO, I. I., 2012. Study of fundamental properties of the Universe using precise molecular spectroscopy. Vestnik RFFI, vol. 1(73), no. 111–118.

10. GOLUBIATNIKOV, G. YU., LAPINOV, A. V., GUARNERI, A., andKNÖCHEL, R., 2005.Precise Lamb-dip measurements of millimeter and submillimeter wave rotational transitions of 16O12C32S. J. Mol. Spectrosc. vol. 234, no. 1, pp. 190–194. DOI: https://doi.org/10.1016/j.jms.2005.08.012

11. CAZZOLI, G. and PUZZARINI, C., 2008. Lamb-dip spectrum of methyl-acetylene and methyldiacetylene: precise rotational transition frequencies and parameters of the main isotopic species. Astron. Astrophys. vol. 487, no. 3,pp. 1197–1202. DOI:https://doi.org/10.1051/0004-6361:200809938

12. CAZZOLI, G., PUZZARINI, C., STOPKOWICZ, S., and GAUSS J., 2010. Hyperfine structure in the rotational spectra of trans-formic acid:Lamb-dip measurements and quantum-chemical calculations. Astron. Astrophys., vol. 520, id. A64. DOI: https://doi.org/10.1051/0004-6361/201014787

13. BELOV, S. P., BURENIN, A. V., GOLUBIATNIKOV, G. YU., and LAPINOV, A. V., 2013.What is the nature of the doublets in the E-methanol Lamb-dip spectra? In: Proc. 68th OSU International Symposium on Molecular Spectroscopy. Ohio, USA. pp. 340. Available from: http://molspect.chemistry.ohiostate.edu/molspect_conf_public/archive_2013/p072-ppt.tar.gz

14. ALEKSEEV, E. A., MOTIYENKO, R. A., and MARGULÈS L., 2011. Millimeter- and Submillimeter-Wave Spectrometers Based on the Direct Digital Synthesizers. Radio Phys. Radio Astron. vol. 16, no. 3, pp. 313–327 (in Russian).

15. ALEKSEEV, E. A. and ZAKHARENKO, V. V., 2007. Direct Digital Synthesizer at the Microwave Spectroscopy. Radio Phys. Radio Astron. vol. 12., no. 2, pp. 205–213 (in Russian).

16. MOTIYENKO, R. A., ALEKSEEV, E. A., DYUBKO, S. F., and LOVAS, F. J., 2006. Microwave Spectrum and Structure of Furfural. J. Mol. Spectrosc. vol. 240, no. 1, pp. 93–101. DOI: https://doi.org/10.1016/j.jms.2006.09.003

17. SNYDER, L. E., LOVAS, F. J., HOLLIS, J. M., FRIEDEL, D. N., JEWELL, P. R., REMIJAN, A., ILYUSHIN, V. V., ALEKSEEV, E. A., and DYUBKO, S. F., 2005. A rigorous attempt to verify interstellar glycine. Astrophys. J. vol. 619, no. 2, pp. 914–930. DOI: https://doi.org/10.1086/426677

18. ILYUSHIN, V. V., ALEKSEEV, E. A., DYUBKO, S. F., MOTIYENKO, R. A.,and LOVAS, F. J., 2005. Millimeter wave spectrum of glycine. J. Mol. Spectrosc. vol. 231, no. 1, pp. 15–22. DOI: https://doi.org/10.1016/j.jms.2004.12.003

19. KRYVDA, A. V., GERASIMOV, V. G., DYUBKO, S. F., ALEKSEEV, E. A.,and MOTIYENKO, R. A., 2009. New measurements of the microwave spectrum of formamide. J. Mol. Spectrosc. vol. 254, no. 1, pp. 28–32. DOI: https://doi.org/10.1016/j.jms.2008.12.001

20. REMIJAN, A. J., SNYDER, L. E., MCGUIRE, B. A., KUO, H.-L., LOONEY, L. W., FRIEDEL, D. N., GOLUBIATNIKOV, G. YU., LOVAS, F. J., ILYUSHIN, V. V., ALEKSEEV, E. A., DYUBKO S. F., McCALL, B. J., and HOLLISET, J. M. , 2014. Observational Results of a Multi-telescope Campaign in Search of Interstellar Urea[(NH2)2CO]. Astrophys. J. vol. 783, No. 2, id. 77. DOI: https://doi.org/10.1088/0004-637X/783/2/77

21. COSTAIN, C. C., 1969. The use of saturation dip absorption in microwave spectroscopy and in microwave frequency stabilization. Can. J. Phys. vol. 47, no. 21, pp. 2431–2433. DOI: https//doi.org/10.1139/p69-299

22. WINTON, R. S. and GORDY, W., 1970. High-precision millimeter-wave spectroscopy with the lamb dip. Phys. Lett. A. vol. 32, is. 4, pp. 219–220. DOI: https://doi.org/10.1016/0375-9601(70)90287-2

23. LETOHOV, V. S. and CHEBOTAREV, V. P., 1990. Nonlinear laser ultra high resolution spectroscopy. Moskow: Nauka Publ. (in Russian).

24. CAZZOLI, G., ESPOSTI, C. D., and FAVERO, P. G., 1980. Quadrupole coupling constant of deuterium in hydrocyanic acid-d1 (nitrogen-15) by Lamb dip microwave spectroscopy. J. Phys. Chem. vol. 84, is. 14, pp. 1756–1757. DOI: https://doi.org/10.1021/j100451a002

25. CAZZOLI, G. and DORE, L., 1990. Observation of crossing resonancesin the hyperfine structure of the J=1–0 transition of DC15N. J. Mol. Spectrosc. vol. 143, is. 2, pp. 231–236. DOI: https://doi.org/10.1016/0022-2852(91)90087-Q

26. DORE, L., DEGLI ESPOSTI, C., MAZZAVILLANI, A., and CAZZOLI, G., 1999. Pure rotational spectra of 32SD+3 and 34SD+3: Determination of the substitution structure of the sulfonium ion. Chem. Phys. Lett. vol. 300, is. 3, pp. 489–492. DOI: https://doi.org/10.1016/S0009-2614(98)01403-1

27. KRUPNOV, A. F., TRETYAKOV, M. YU., BELOV, S. P., GOLUBIATNIKOV, G. YU., PARSHIN, V. V., KOSHELEV, M. A., MAKAROV, D. S., and SEROV, E. A., 2012. Accurate broadband rotational BWO-based spectroscopy. J. Mol. Spectrosc., vol. 280, pp. 110–118. DOI: 0.1016/j.jms.2012.06.010

28. GOLUBYATNIKOV, G.YU., BELOV, S.P., LEONOV, I.I., ANDRIANOV, A.F., ZINCHENKO, I.I., LAPINOV, A.V., MARKOV, V.N., SHKAEV, A.P., 2013. Precision Subdoppler Millimeter and Submillimeter Lamb-Dip Spectrometer . Izvestiya vuzov. Radiofizika, vol. 56, no. 8/9, pp. 666–677 (in Russian).

29. Technical information [Analog devisec]. [online] Available from: http://www.analog.com/static/imported-files/data_sheets/AD9851.pdf

30. Technical information [Analog devisec]. [online] Available from: http://www.analog.com/static/imported-files/data_sheets/AD9834.pdf

31. Technical information [Analog devisec]. [online] Available from: http://www.analog.com/static/imported-files/data_sheets/ADUC834.pdf

32. ALEKSEEV, E. A., 2011.Direct Digital Synthesizers: Possibilities and Limitations for Microwave Spectroscopy. Radio Phys. Radio Astron., vol. 16, no. 2, pp. 209–219 (in Russian).

33. GORDY, W. and COOK, R. L., 1984. Microwave Molecular Spectra. New York: John Wiley & Sons, 1015 p.

34. WINNEWISSER, G., BELOV, S. P., KLAUS, TH., and SCHIEDER, R., 1997. Sub-Doppler measurements of the rotational transitions of carbon monoxide. J. Mol. Spectrosc., vol. 184, is. 2, pp. 468–472. DOI: https://doi.org/10.1006/jmsp.1997.7341

 

 

 


Keywords


radiospectrometer; sub-Doppler spectral resolution; Lamb dip; direct digital synthesizer

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)