ELECTROMAGNETIC WAVE SCATTERING BY A SYSTEM OF VIBRATORS HAVING VARIABLE IMPEDANCE IN A RECTANGULAR WAVEGUIDE
Abstract
A problem of electromagnetic wave excitation by finite-dimensional material bodies located in an arbitrary electrodynamic volume was formulated. The problem was reduced to solution of two-dimensional integral equations for electrical surface currents on the material bodies, using the concept of distributed impedance. Physically correct transition from the resulting integral equations to a system of one-dimensional equations for the currents in thin impedance vibrators, which electrophysical and geometrical parameters are generally irregular over their length, was made. The solution of these equations for the system of two vibrators having varying surface impedance in a rectangular waveguide was found by the generalized method of induced electromotive forces. The results of numerical and experimental studies of electrodynamic characteristics of the structure under consideration are presented.
Key words:electromagnetic waves, impedance vibrator, rectangular waveguide, varying surface impedanceManuscript submitted 11.11.2014
Radio phus. radio astron. 2015, 20(1): 64-75
REFERENCES
1. AL-HAKKAK, M. J., 1969. Experimental investigation of the inputimpedance characteristics of an antenna in a rectangular waveguide. Electron. Lett. vol. 5, is. 21, pp. 513–514. DOI: https://doi.org/10.1049/el:19690385
2. CRAVEN, G. F. and MOK, C. K., 1971. The design of evanescent mode waveguide bandpass filters for a prescribed insertion loss characteristic. IEEE Trans. Microwave Theory Tech. vol. 19, is 3, pp. 295–308. DOI: 10.1109/TMNT.1971.1127503
3. EISENHART, R. L. and KHAN, P. J., 1971. Theoretical and experimental analysis of a waveguide mounting structure. IEEE Trans. Microwave Theory Tech. vol. 19, is. 8, pp. 706–719. DOI: https://doi.org/10.1109/TMTT.1971.1127612
4. PETLENKO, V. A. and NESTERENKO, M. V., 1984. Current distribution and resonance of rod conductors in a rectangular waveguide. Radiophys. Quantum Electron. vol. 27, is. 3, pp. 236–241. DOI: https://doi.org/10.1007/BF01035044
5. LOPUCH, S. L. and ISHII, T. K., 1984. Field distribution of two conducting posts in a waveguide. IEEE Trans. Microwave Theory Tech. vol. 32, is. 1, pp. 29–33. DOI: https://doi.org/10.1109/TMTT.1984.1132607
6. WILLIAMSON, A. G., 1986. Variable-length cylindrical post in a rectangular waveguide. IEE Proc. H. vol. 133, no. 1, pp. 1–9. DOI: 10.1049/ip-h-2:19860001
7. HASHEMI-YEGANEH, S. and BIRTCHER, C. R., 1994. Numerical and experimental studies of current distributions on thin metallic posts inside rectangular waveguides. IEEE Trans. Microwave Theory Tech. vol. 42, is. 6, pp. 1063–1068. DOI: https://doi.org/10.1109/22.293577
8. ROELVINK, J. and WILLIAMSON, A. G., 2005. Reactance of hollow, solid, and hemispherical-cap cylindrical posts in rectangular waveguide. IEEE Trans. Microwave Theory Tech. vol. 53, is. 10, pp. 3156–3160. DOI: https://doi.org/10.1109/TMTT.2005.855356
9. KIRILENKO, A., KULIK, D., MOSPAN, L. and RUD, L., 2008. Two notched band two post waveguide. In: 12th Int. Math. Methods Electromagn. Theory Conf. Proceedings. Odesa, Ukraine, pp. 164–166.
https://doi.org/10.1109/mmet.2008.4580925
10. TOMASSONI, C. and SORRENTINO, R., 2013. Anew class pseudoelliptic waveguide filters using dual-post resonators. IEEE Trans. Microwave Theory Tech. vol. 61, is. 6, pp. 2332–2339. DOI: 10.11109/TMTT.2013.2258171
11. MOSPAN, L. P., PRIKOLOTIN, S. A., STESHENKO, S. O. and KIRILENKO, A. A., 2013. Spectral Properties of a Rectangyular Waveguide Section with Two Uneven Rectangular POSTS. Radio Phys. Radio Astron. vol. 18, no. 4, pp. 349–356 (in Russian).
12. CASSEDY, E. S. and FAINBERG, J., 1960. Back scattering cross sections of cylindrical wires of finite conductivity. IEEE Trans. Antennas Propag. vol. 8, no. 1, pp. 1–7. DOI: https://doi.org/10.1109/TAP.1960.1144803
13. KING, R. W. P. and WU, T. T., 1966. The imperfectly conducting cylindrical transmitting antenna. IEEE Trans. Antennas Propag. vol. 14, no. 5, pp. 524–534. DOI: https://doi.org/10.1109/TAP.1966.1138753
14. GLUSHKOVSKY, E. A., LEVIN, B. M. and RABINOVICH, E. Ya., 1967. Integral Equation for the Current in Thin Impedance Radiator. Radiotekhnika. vol. 22, no. 12. pp. 18–23 (in Russian).
15. LAMENSDORF, D., 1967. An experimental investigation of dielectric-coated antennas. IEEE Trans. Antennas Propag. vol. 15, no. 6, pp. 767–771. DOI: https://doi.org/10.1109/TAP.1967.1139049
16. INAGAKIi, N., KUKINO, O. and SEKIGUCHIi, T., 1972. Integral equation analysis of cylindrical antennas characterized by arbitrary surface impedance. IEICE Trans. Commun. vol. 55-B, no. 6, pp. 683–690. https://doi.org/10.1109/8.387174
17. BRETONES, A. R., MARTIN, R. G. and GARCIA, I. S., 1995. Time-domain analysis of magnetic-coated wire antennas. IEEE Trans. Antennas Propag. vol. 43, no. 6, pp. 591–596. DOI: 10.1109/8.387174
https://doi.org/10.1109/8.387174
18. NESTERENKO, M. V., 2003. Electromagnetic Radiation of Thin Impedance Vibrators in Homogeneous Isotropic Dissipative Medium. Radio Phys. Radio Astron. vol. 8, no. 2, pp. 207–216 (in Russian).
19. HANSON, G. W., 2008. Radiation efficiency of nano-radius dipole antennas in the microwave and far-infrared regimes. IEEE Antennas Propag. Mag. vol. 50, no. 3, pp. 66–77. DOI: https://doi.org/10.1109/MAP.2008.4563565
20. NESTERENKO, M. V., KATRICH, V. A., PENKIN, Yu. M., DAKHOV, V. M. and BERDNIK, S. L., 2011. Thin Impedance Vibrators. Theory and Applications. New York: Springer Science+Business Media.
21. LEWIN, L., 1981. Theory of Waveguides: Techniques for Solution of Waveguide Problems. Moscow, Russia: Radio i Svyaz' Publ. (in Russian).
22. GARB, K. L., FRIDBERG, P. S. and YAKOVERr, I. M., 1982. Electromagnetic wave scattering by a thin impedance film in a rectangular waveguide. Radiotekhnika i Elektronika. vol. 27, no. 4, pp. 690–695 (in Russian).
23. YAKOVER, I.M., 1983. H10 mode scattering by a thin resonant impedance rod in a rectangular waveguide. Litovskiy fizicheskiy sbornik. vol. 23, no. 1, pp. 34–40 (in Russian).
24. GOROBETS, N. N., NESTERENKO, M. V., PETRENKO, V. A. and KHIZHNYAK, N. A., 1984. Thin impedance vibrator in a rectangular waveguide. Radiotekhnika. vol. 39, no. 1, pp. 65–68 (in Russian).
25. NESTERENKO , M. V. and PETRENKO, V. A., 1988. Current distribution and resonance frequencies of thin impedance dipoles in a rectangular waveguide. Izv. Vyssh. Uchebn. Zaved. Radioelektronica. vol. 31, no. 2, pp. 80–82 (in Russian).
26. GOROBETS, N. N., NESTERENKO , M. V. and PETRENKO, V. A., 1990. Resonance characteristics of thin impedance dipoles in a cutoff rectangular waveguide. Radiotekhnika. vol. 45, no. 3, pp. 57–59 (in Russian).
27. NESTERENKO, M. V., BELOGUROV, E. Yu., KATRICH, V. A. and KIJKO, V. I., 2008. H10 mode scattering by a thin resonant impedance vibrator with variable radius in a rectangular waveguide. Visn. Khark. Nats. Univ. Radiofizyka ta Elektronika. no. 806, pp. 14–17 (in Russian).
28. WU, T. T. and KING, R. W. P., 1965. The cylindrical antenna with non reflecting resistive loading. IEEE Trans. Antennas Propag. vol. 13, no. 3, pp. 369–373. DOI: https://doi.org/10.1109/TAP.1965.1138429
29. GLUSHKOVSKY, E. A., IZRAILIT, A. B., LEVIN, B. M. and RABINOVICH, E. Ya., 1967. Linear antennas with variable surface impedance. In: Antenny. Moskow, Russia: Svyaz' Publ. is. 2, pp. 154–165 (in Russian).
30. SHEN, L.-C., 1967. An experimental study of the antenna with non reflecting resistive loading. IEEE Trans. Antennas Propag. vol. 15, no. 5, pp. 606–611. DOI: https://doi.org/10.1109/TAP.1967.1139025
31. TAYLOR, C. D., 1968. Cylindrical transmitting antenna: tapered resistivity and multiple impedance loadings. IEEE Trans. Antennas Propag. vol. 16, no. 2, pp. 176–179. DOI: https://doi.org/10.1109/TAP.1968.1139146
32. RAO, B. L. J., FERRIS, J. E. and ZIMMERMAN, W. E., 1969. Broadband characteristics of cylindrical antennas with exponentially tapered capacitive loading. IEEE Trans. Antennas Propag. vol. 17, no. 2, pp. 145–151 DOI: https://doi.org/10.1109/TAP.1969.1139408
33. NESTERENKO, M. V., 2005. Electromagnetic Wave Scattering by Variable Surface Impedance Thin Vibrators. Radio Phys. Radio Astron. vol. 10, no. 4, pp. 408–417 (in Russian).
34. GARB, K. L., FRIDBERG, P. S., and YAKOVER, I. M., 1985. H10 mode diffraction on resistive thin film with surface impedance stepwise change in rectangular waveguide. Radiotekhnika i Elektronika. vol. 30, no. 1. pp. 41–48 (in Russian).
35. NESTERENKO, M. V. and BELOGUROV, E. Yu., 2006. H10 mode scattering by thin vibrator with variable impedance in rectangular waveguide. Radioelektronika i Informanika. no. 1(32), pp. 8–12 (in Russian).
36. KHIZHNYAK, N. A., 1986. Integral equations of macroscopic electrodynamics. Kyiv, Ukraine: Naukova Dumka Publ. (in Russian).
37. BERDNIK, S. L., PENKIN, D. Yu., KATRICH, V. A., PENKIN, Yu. M. and NESTERENKO, M. V., 2014. Using the Concept of Surface Impedance in Problems of Electrodynemics (75 Years Later). Radio Phys. Radio Astron. vol. 19, no. 1, pp. 57–80 (in Russian).
Keywords
Full Text:
PDFCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)