FEATURES OF BICONICAL ANTENNA PULSE RADIATION

DOI: https://doi.org/10.15407/rpra20.02.133

M. M. Legenkiy

Abstract


Fields in bicone line and in free space are presented in the form of expansion over frequency-independent modes. Each mode possesses the dispersion depending on radius. With the mode matching method, the bicone antenna pulse radiation is calculated. It is shown that introducing some dielectric layer improves the antenna characteristics and allows to obtain the radiated field with higher amplitude.

Key words: biconical antenna, frequency-independent modes, dispersion, mode matching method, time domai

Manuscript submitted 27.02.2015

Radio phys. radio astron. 2015, 20(2): 133-141

 

REFERENCES

1.  SCHANTZ, H., 2005. The Art and Science of Ultrawideband Antennas. – Norwood, MA: Artech House, Inc.

2. GHOSH, D., SARKAR, T. K. and MOKOLE,E. L., 2009. Design of a Wide-Angle Biconical Antenna for Wideband Communications. Prog. Electromagn. Res. B. vol. 16, pp. 229–245. DOI: https://doi.org/10.2528/PIERB09061508

3. KOCHETOV, B. A. and BUTRYM, A. Y., 2013. Axially Symmetric Transient Electromagnetic Fields in a Radially Inhomogeneous Biconical Transmission Line. Prog. Electromagn. Res. B. vol. 48, pp. 375–394. DOI: https://doi.org/10.2528/PIERB13011305

4. LEGENKIY, M. N. and BUTRYM, A. Y., 2010. Method of Mode Matching in Time Domain. Prog. Electromagn. Res. B. vol. 22, pp. 257–283. DOI: https://doi.org/10.2528/PIERB10043003

5. GALEJS, J., 1964. Capacitor Type Biconical Antennas. Radio Sci. J. Res. NBS/USNC-URSI. vol. 68D, no. 2, pp. 165–172.

6.  LEGENKIY, M. N., BUTRYM, A. Y. and SHARKOVA, M. S., 2003. About Possibility to Create a Small Antenna Based on Inhomogeneous Biconical Line. In: Proceedings of conf. MSMW'2013. Kharkov, Ukraine, pp. 470–472.

7.  TRETYAKOV, O. A.,  1986. Mode Basis Method. Radiotekhnika i Electronica. vol. 31, no. 6, pp. 1071–1082 (in Russian).

8.  BUTRYM, A. Y., ZHENG, Y. and TRETYAKOV, O. A., 2004. Transient Diffraction on a Permittivity Step in a Waveguide: Closed-Form Solution in Time Domain. J. Electromagn. Waves. Appl. vol. 18, no. 7, pp. 861–876. DOI: https://doi.org/10.1163/156939304323105709

9. BUTRYM, A. Y. and LEGENKIY, M. N., 2009. Charge Transport by a Pulse E-Wave in a Waveguide with Conductive Medium. Prog. Electromagn. Res. B. vol. 15, pp. 325–346. DOI: https://doi.org/10.2528/PIERB09050703

10. ANTYUFEYEVA, M. S., BUTRYM, A. Y. and TRETYAKOV, O. A., 2009. Transient Electromagnetic Fields in Cavity with Dispersive Double Negative Medium. Prog. Electromagn. Res. M. vol. 8, pp. 51–65. DOI: https://doi.org/10.2528/PIERM09062307

11. TRETYAKOV, O. A. and DUMIN, A. N., 2000. Emission of Nonstationary Electromagnetic Fields by a Plane Radiator. Telecommunications and Radio Engineering. vol. 54, is. 1, pp. 2–15. DOI: https://doi.org/10.1615/TelecomRadEng.v54.i1.10

12. BUTRYM, A. Y. and KOCHETOV, B. A., 2010. Mode Expansion in Time Domain for Conical Lines with Angular Medium Inhomogeneity. Prog. Electromagn. Res. B. vol. 19, pp. 151–176. DOI: https://doi.org/10.2528/PIERB09102606

13. TAFLOVE, A. and. HAGNESS, S. C., 2005. Computational Electrodynamics: The Finite-Difference Time-Domain Method. Boston, London: Artech House, Inc.

 

 

 


Keywords


biconical antenna; frequency-independent modes; dispersion; mode matching method; time domai

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)