ANALYSIS OF ACTIVE PHASED ANTENNA ARRAY PARAMETERS FOR THE GURT RADIO TELESCOPE

DOI: https://doi.org/10.15407/rpra20.02.142

P. L. Tokarsky, A. A. Konovalenko, S. N. Yerin

Abstract


The calculation technique results of numerical analysis of parameters of active phased antenna array (APAA) of the Giant Ukrainian Radio Telescope (GURT) of decameter and meter wavelengths which is being built now nearby Kharkiv at the area of S. Ya. Braude Radio Astronomy Observatory of the Institute of Radio Astronomy of the National Academy of Sciences of Ukraine are presented. The technique is based on the matrix theory of antenna arrays which combines an electromagnetic approach to analysis of radiators array with the methods of microwave multiport theory for the APAA feed network description. The results of numerical calculation of the APAA effective area and its gain, which in case of passive array is associated with its efficiency, are given and analyzed for a wide scan range within 10 to 80 MHz.

Key words: active phased antenna array, gain, directivity, effective area, radio telescope

Manuscript submitted 30.04.2015

Radio phys. radio astron. 2015, 20(2): 142-153

REFERENCES

1.  KONOVALENKO, A. A., 2005. Low-Frequency Radio Astronomy Prospecrs. Radio Phys. Radio Astron. vol. 10, special is., pp. S86–S114 (in Russian).

2. DE VOS, M., GUNST, A. W. and NIJBOER, R., 2009. The LOFAR Telescope: System Architecture and Signal Processing. IEEE Proc. vol. 97, is. 8, pp. 1421–1430. DOI: https://doi.org/10.1109/JPROC.2009.2020509

3. ELLINGSON, S. W., CLARKE ,T. E., COHEN, A., CRAIG, J., KASSIM, N. E., PIHLSTROM, Y., RICKARD, L. J. and TAYLOR, G. B., 2009. The Long Wavelength Array. IEEE Proc. vol. 97, is. 8, pp. 1431–1437. DOI: https://doi.org/10.1109/JPROC.2009.2015683

4. ZARKA, P., GIRARD, J. N., TAGGER, M., DENIS, L, AGHANIM, N., ALSAC, L., ARNAUD, M., BARTH, S., BOONE, F., BOSSE, S., CAPAYROU, D., CAPDESSUS, C., CECCONI, B., CHARRIER, D., COFFRE, A., COGNARD, I., COMBES, F., CORBEL, S., CORNILLEAU-WEHRLIN, N., COTTET, P., DOLE, H., DUMEZ-VIOU, C., FALKOVYCH, I., FERRARI, C., FLOQUET, F., GARNIER, S., GEORGES, G., GOND, B., GRESPIER, N., GRIESSMEIER, J.-M., JOLY, S., KONOVALENKO, A., LAMY, L., LEHNERT, M., POMMIER, M., RUCKER, H., SANDRÉ, P., SEMELIN, B., TAFFOUREAU, C., TASSE, C., THÉTAS, E., THEUREAU, G., TOKARSKY, P., VAN DRIEL, W., VIMON, J.-B. and WEBER, R.,  2012. LSS/NENUFAR: The LOFAR Super Station Project in Nançay. In: S. BOISSIER, P. DE LAVERNY, N. NARDETTO, R. SAMADI, D. VALLS-GABAUD and H. WOZNIAK,  eds. SF2A 2012: Proc. of the Annual meeting of the French Society of Astronomy and Astrophysic. pp. 687–694.

5. KONOVALENKO, A. A., FALKOVICH, I. S., GRIDIN, A. A., TOKARSKY, P. L. and YERIN, S. N., 2012. UWB active antenna array for low frequency radio astronomy. In: VI-th International Conference on Ultrawideband and Ultrashort Impulse Signals Conference Proceedings. 17-21 Sept. 2012,Sevastopol,Ukraine, pp. 39–43. DOI: https://doi.org/10.1109/UWBUSIS.2012.6379725

6. BRAUDE, S. Ya., MEGN, A. V. and SODIN, L. G., 1978. Decametre Waves Radio Telescope UTR-2. In: Antenny. Moskow, Russia: Svyas' Publ. is. 26, pp. 3–15 (in Russian).

7. ELLINGSON, S. W., SIMONETTI, J. H. and PATTERSON, C. D., 2007. Design and Evaluation of an Active Antenna for a 29–47 MHz Radio Telescope Array. IEEE Trans. Antennas Propag. vol. 55, no. 3, pp. 826–831. DOI: https://doi.org/10.1109/TAP.2007.891866

8. ELLINGSON, S. W., 2011. Sensitivity of Antenna Arrays for Long-Wavelength Radio Astronomy. IEEE Trans. Antennas Propag. vol. 59, no. 6, pp. 1855–1863. DOI: https://doi.org/10.1109/TAP.2011.2122230

9. WIJNHOLDS, S. J., 2011. In Situ Antenna Performance Evaluation of the LOFAR Phased Array Radio Telescope. IEEE Trans. Antennas Propag. vol. 59, no. 6, pp. 1981–1989. DOI: https://doi.org/10.1109/TAP.2011.2122230

10. YERIN, S. N., TOKARSKY, P. L., GRIDIN, A. A., BUBNON, I. N., KONOVALENKO, A. A., FALKOVICH, I. S., and REZNIK, A. P.,  2014. Beamforming Unit for Sub-Array of Decameter and Meter Wave Radio Telescope GURT. Radio Phys. Radio Astron. vol. 19, no. 3, pp. 240–248 (in Russian).

11. SAZONOV, D. M.,  2015. Multielement antenna systems. The matrix approach. Moskow, Russia: Radiotekhnika Publ. (in Russian).

12. TOKARSKY, P. L.,  1984. Scatterig matrix of antenna array with Joule losses in radiator. Izv. Vyssh. Uchebn. Zaved. Radiotekhnika. vol. 27, no. 2, pp. 81–83 (in Russian).

13.  TOKARSKY, P. L., 2006. Matrix Model of a Dissipative Antenna Array. In: Radiotekhnika. All-Ukr. Sci. Interdep. Mag. is. 146, pp. 156–170 (in Russian).

14.  LEVENTHAL, R. G. and GREEN, L., 2006. Semiconductors Modeling: For Simulating Signal, Power, and Electromagnetic Integrity. New York, NY: Springer.

15. SAZONOV, D. M., GRIDIN, A. N. and MISHUSTIN B. A.,  1981. Microwave Circuits. Moskow, Russia: Vysshaya Shkola Publ. (in Russian).

16. MARKOV, G. T. and SAZONOV, D. M., 1975. Aerials, 2nd ed., Moskow, Russia: Energiya Publ. (in Russian).

17. IEEE standard definitions of terms for antennas, IEEE Standard 145. 1993.

18. BURKE, G. J. and POGGIO, A. G., 1981. Numerical Electromagnetic Code (NEC) Pt. II. Program Description-Code. Lawrence, Ca: Lawrence Livermore National Laboratory, UCID-18834.

19. TOKARSKY, P. L. and YERIN, S. N.,  2013. AMultiport Approach to Modeling of Phased Antenna Array for Radio Astronomy. In: 43th European Microwave Conference (EuMC 2013) Proceedings. 6-11 Oct. 2013, Nuremberg, Germany, pp. 1651–1654.

20.  YERIN, S. N. and TOKARSKY, P. L., 2013. Mutual coupling between antennas used as array elements for a low frequency radio telescope. In: Radiotekhnika. All-Ukr. Sci. Interdep. Mag. is. 173, pp. 23–30 (in Russian).

 


Keywords


active phased antenna array; gain; directivity; effective area; radio telescope

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)