CLOUD DISTRIBUTION IN OBSCURING TORI OF ACTIVE GALACTIC NUCLEI
Abstract
In the framework of N-body simulations, we have investigated the influence of initial conditions on the evolution of self-gravitating torus being in the active galactic nuclei (AGN), as well as evolution of distribution of particles (clouds) by their orbital elements analysed. The results of simulations show that stability of a geometrically thick torus in AGN can be explained by the motion of clouds in the torus by inclined and eccentric orbits. The scenario of torus formation being related to the beginning of the AGN’s stage is suggested.
Key words: active galactic nuclei, unified scheme, obscuring torus
Manuscript submitted 28.05.2015
Radio phys. radio astron. 2015, 20(3): 191-204
REFERENCES
1. BIANCHI, S., MAIOLINO, R. and RISALITI, G., 2012. AGN Obscuration and the Unified Model. Adv. Astron., id. 782030.
2. NETZER, H., 2013. The physics and evolution of active galactic nuclei. New York: Cambridge university press. DOI: https://doi.org/10.1017/CBO9781139109291
3. NETZER, H., 2015. Revisiting the Unified Model of Active Galactic Nuclei. Ann. Rev. Astron. Astrophys., vol. 53 (astro-ph/1505.00811).
4. ANTONUCCI, R., 1993. Unified models for active galactic nuclei and quasars. Ann. Rev. Astron. Astrophys., vol. 31, pp. 473–521. DOI: https://doi.org/10.1146/annurev.aa.31.090193.002353
5. ANTONUCCI, R. R. J. and MILLER, J. S., 1985. Spectropolarimetry and the nature of NGC 1068. Astrophys. J., vol. 297, pp. 621–632. DOI:
https://doi.org/10.1086/163559
6. TRAN, H. D., 2003. The Unified Model and Evolution of Active Galaxies: Implications from a Spectropolarimetric Study. Astrophys. J., vol. 583, no. 2, pp. 632–648. DOI: https://doi.org/10.1086/345473
7. URRY, C. M. and PADOVANI, P., 1995. Unified Schemes for Radio-Loud Active Galactic Nuclei. Publ. Astron. Soc. Pac., vol. 107, pp. 803–845. DOI: https://doi.org/10.1086/133630
8. SCHMITT, H. R., ANTONUCCI, R. R. J., ULVESTAD, J. S.,
KINNEY, A. L., CLARKE, C. J. and PRINGLE, J. E., 2001. Testing the Unified Model with an Infrared-selected Sample of Seyfert Galaxies. Astrophys. J., vol. 555, no. 2, pp. 663–672. DOI: https://doi.org/10.1086/321505
9. JAFFE, W., MEISENHEIMER, K., RÖTTGERING, H. J. A., LEINERT, CH., RICHICHI, A., CHESNEAU, O., FRAIXBURNET, D., GLAZENBORG-KLUTTIG, A., GRANATO, G.-L., GRASER, U., HEIJLIGERS, B., KÖHLER, R., MALBET, F., MILEY, G. K., PARESCE, F., PEL, J.-W., PERRIN, G., PRZYGODDA, F., SCHOELLER, M., SOL, H., WATERS, L. B. F. M., WEIGELT, G., WOILLEZ, J. and DE ZEEUW, P. T., 2004. The central dusty torus in the active nucleus of NGC 1068. Nature, vol. 429, no. 6987, pp. 47–49. DOI: https://doi.org/10.1038/nature02531
10. RABAN, D., JAFFE, W., RÖTTGERING, H. J. A., MEISENHEIMER, K. and TRISTRAM, K. R. W., 2009. Resolving the obscuring torus in NGC 1068 with the power of infrared interferometry: revealing the inner funnel of dust. Mon. Not. R. Astron. Soc., vol. 394, no. 3, pp. 1325–1337. DOI:
https://doi.org/10.1111/j.1365-2966.2009.14439.x
11. SCHARTMANN, M., MEISENHEIMER, K., CAMENZIND, M., WOLF, S. and HENNING, TH., 2005. Towards a physical model of dust tori in Active Galactic Nuclei. Astron. Astrophys. vol. 437, no. 3, pp. 861–881. DOI:
https://doi.org/10.1051/0004-6361:20042363
12. DULLEMOND, C. P. and VAN BEMMEL, I. M., 2005. Clumpy tori around active galactic nuclei. Astron. Astrophys., vol. 436, no. 1, pp. 47–56. DOI:
https://doi.org/10.1051/0004-6361:20041763
13. TRISTRAM, K. R. W., MEISENHEIMER, K., JAFFE, W., SCHARTMANN, M., RIX, H.-W., LEINERT, CH., MOREL, S., WITTKOWSKI, M., RÖTTGERING, H., PERRIN, G., LOPEZ, B., RABAN, D., COTTON, W. D., GRASER, U., PARESCE, F. and HENNING, TH., 2007. Resolving the complex structure of the dust torus in the active nucleus of the Circinus galaxy. Astron. Astrophys., vol. 474, no. 3, pp. 837–850. DOI:
https://doi.org/10.1051/0004-6361:20078369
14. KROLIK, J. H. and BEGELMAN, M. C., 1988. Molecular tori in Seyfert galaxies – Feeding the monster and hiding it. Astrophys. J., vol. 329, pp. 702–711. DOI: https://doi.org/10.1086/166414
15. GREENHILL, L. J., GWINN, C. R., ANTONUCCI, R. and BARVAINIS, R., 1996. VLBI Imaging of Water Maser Emission from the Nuclear Torus of NGC 1068. Astrophys. J. Lett., vol. 472, pp. L21–L25. DOI: https://doi.org/10.1086/310346
16. LO, K. Y., 2005. Mega- Masers and Galaxies. Ann. Rev. Astron. Astrophys., vol. 43, no. 1, pp. 625–676. DOI: https://doi.org/10.1146/annurev.astro.41.011802.094927
17. MAIOLINO, R., 2008. Prospects for AGN studies with ALMA. New Astron. Rev., vol. 52, no. 6, pp. 339–357. DOI: https://doi.org/10.1016/j.newar.2008.06.012
18. NENKOVA, M., SIROCKY, M. M., IVEZIC, Z. and ELITZUR, M., 2008. AGN Dusty Tori. I. Handling of Clumpy Media; II. Observational Implications of Clumpiness. Astrophys. J., vol. 685, no. 2, pp. 147–180.
19. HÖNIG, S. F., BECKERT, T., OHNAKA, K. and WEIGELT, G.,2006. Radiative transfer modeling of three-dimensional clumpy AGN tori and its application to NGC 1068. Astron. Astrophys., vol. 452, no. 2, pp. 459–471. DOI: https://doi.org/10.1051/0004-6361:20054622
20. KROLIK, J. H., 2007. AGN Obscuring Tori Supported by Infrared Radiation Pressure. Astrophys. J., vol. 661, no. 1, pp. 52–59. DOI: https://doi.org/10.1086/515432
21. SCHARTMANN, M., BURKERT, A., KRAUSE, M., CAMENZIND, M., MEISENHEIMER, K. and DAVIES, R. I., 2010. Gas dynamics of the central few parsec region of NGC 1068 fuelled by the evolving nuclear star luster. Mon. Not. R. Astron. Soc., vol. 403, no. 4, pp. 1801–1811. DOI: https://doi.org/10.1111/j.1365-2966.2010.16250.x
22. WADA, K., PAPADOPOULOS, P. P. and SPAANS, M., 2009. Molecular Gas Disk Structures Around Active Galactic Nuclei. Astrophys. J., vol. 702, no. 1, pp. 63–74. DOI: https://doi.org/10.1088/0004-637X/702/1/63
23. ELVIS, M. A., 2000. Structure for Quasars. Astrophys. J., vol. 545, no. 1, pp. 63–76. DOI: https://doi.org/10.1086/317778
24. ELITZUR, M. and SHLOSMAN, I., 2006. The AGNobscuring Torus: The End of the "Doughnut" Paradigm? Astrophys. J., vol. 648, no. 2, pp. L101–L104. DOI: https://doi.org/10.1086/508158
25. DORODNITSYN, A., KALLMAN, T. and BISNOVATYIKOGAN,
G. S., 2012. AGN Obscuration through Dusty, Infrared-dominated Flows. Astrophys. J., vol. 747, no. 1, pp. 8–19. DOI: https://doi.org/10.1088/0004-637X/747/1/8
26. BANNIKOVA, E. YU. and KONTOROVICH, V. M., 2007. Adipolar vortex model for the obscuring tori in active galactic nuclei. Astron. Rep., vol. 51, no. 4, pp. 264–273.
https://doi.org/10.1134/S1063772907040026
27. Bannikova, E. YU., Vakulik, V. G. and Sergeev, A. V., 2012. N-body simulation of a clumpy torus: application to active galactic nuclei. Mon. Not. R. Astron. Soc., vol. 424, no. 2, pp. 820–829. DOI: https://doi.org/10.1111/j.1365-2966.2012.21186.x
28. ELVIS, M., 2012. Slicing the Torus: Obscuring Structures in Quasars. J. Phys., vol. 372, id. 012032(astro-ph/1201.5101).
29. DUBOSHIN, G. N., 1968. Celestian Mechanics. Moscow: Nauka (in Russian).
30. PLUMMER, H. C., 1911. On the problem of distribution in globular star clusters. Mon. Not. R. Astron. Soc., vol. 71, pp. 460–470. DOI:
https://doi.org/10.1093/mnras/71.5.460
31. AARSETH, S. J., 1963. Dynamical evolution of clusters of galaxies. Mon. Not. R. Astron. Soc., vol. 126, pp. 223–255. DOI: https://doi.org/10.1093/mnras/126.3.223
32. AARSETH, S. J., 2003. Gravitational N-Body Simulation: Tools and Algorithms. Cambridge: Cambridge university press. DOI: https://doi.org/10.1017/CBO9780511535246
33. BELLEMAN, R. G., BEDORF, J. and PORTEGIES ZWART, S., 2008. High performance direct gravitational N-body simulations on graphics processing units II: An implementation in CUDA. New Astron., vol. 13, no. 2, pp. 103–112. DOI: https://doi.org/10.1016/j.newast.2007.07.004
34. HARFST, S., GUALANDRIS, A., MERRITT, D., SPURZEM, R., ZWART, S. P. and BERCZIK, P.,2007. Performance analysis of direct N-body algorithms on special-purpose supercomputers. New Astron., vol. 12, no. 5, pp. 357–377. DOI: https://doi.org/10.1016/j.newast.2006.11.003
35. BANNIKOVA, E. YU., VAKULIK, V. G. and SHULGA, V. M., 2011. Gravitational potential of a homogeneous circular torus: a new approach. Mon. Not. R. Astron. Soc., vol. 411, no. 1, pp. 557–564. DOI:
https://doi.org/10.1111/j.1365-2966.2010.17700.x
36. SALES, D. A., ROBINSON, A., AXON, D. J., GALLIMORE, J., KHARB, P., CURRAN, R. L., O’DEA, C., BAUM, S., ELITZUR, M. and MITTAL, R., 2015. An Embedded Active Nucleus in the OH Megamaser Galaxy IRAS16399-0937. Astrophys. J., vol. 799, no. 1, id. 25.
37. KONTOROVICH, V. M., 1994. The connection between the interaction of galaxies and their activity. Astron. Astrophys. Trans., vol. 5, pp. 259–278. DOI: https://doi.org/10.1080/10556799408245878
38. ZHU, L., ZHANG, S.-N. and TANG, S.-M., 2009. Evidence for an Intermediate Line Region in Active Galactic Nuclei's Inner Torus Region and its Evolution from Narrow to Broad Line Seyfert I Galaxies. Astrophys. J., vol. 700, no. 2, pp. 1173–1189. DOI: https://doi.org/10.1088/0004-637X/700/2/1173
39. LIU, Y. and ZHANG, N., 2011. Dusty Torus Formation by Anisotropic Radiative Pressure Feedback of Active Galactic Nuclei. Astrophys. J., vol. 728, no. 2, pp. L44–L49. DOI: https://doi.org/10.1088/2041-8205/728/2/L44
40. BLANDFORD, R. D. and PAYN, D. G., 1982. Hydromagnetic flows from accretion discs and the production of radio jets. Mon. Not. R. Astron. Soc., vol. 199, pp. 883–903. DOI: https://doi.org/10.1093/mnras/199.4.883
41. PROGA, D., 2006. Theory of Winds in AGNs. In: The Central Engine of Active Galactic Nuclei, ASP Conference Series, vol. 373, pp. 267–276 (astro-ph/0701100).
42. REYNOLDS, C. S., 2012. Constraints on Comptonthick Winds from Black Hole Accretion Disks: Can We See the Inner Disk? Astrophys. J. Lett., vol. 759, no. 1, pp. L15–L20. DOI: https://doi.org/10.1088/2041-8205/759/1/L15
Keywords
Full Text:
PDFCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)