BRIGHTNESS TEMPERATURE AND SPECTRAL INDEX OF EXTRAGALACTIC BACKGROUND AT DECAMETER WAVELENGTHS
Abstract
The radio maps of distributed low-frequency radio emission for vast areas of Northern Celestial Hemisphere, including the area near the minimum of galactic radiation (42º<δ200<45º, 7h45m<α200<8h35m), were constructed based on the Northern sky survey with the UTR-2 world-largest decameter wave radio telescope. The two-temperature dependence of the background radiation brightness temperature within 12.6 to 25 MHz is built for different frequency pairs of this range for the same coordinates (Т–Т plots). This allows to identify the differential emission spectrum of the Galaxy halo in this direction, whose spectral index is βG =2.81±0.03. In addition, the Т–Т plots multi-frequency technique provided an opportunity to determine the brightness temperatures of the isotropic extragalactic background radiation at decameter wavelength range, whose values were (60±10.0), (41.7±6.0), (30.6±4.2), (19.5±3.6) and (11.6±10.0) kK at 12.6, 14.7, 16.7, 20, and 25 MHz, respectively, with the spectral index βM =2.41±0.1. Metagalaxy contributed to about 70 % of the total emission at all frequencies in this direction.
Key words: metagalactic background, Т–Т plots, spectral index, decameter wavelengths
Manuscript submitted 13.05.2015
Radio phys. radio astron. 2015, 20(3): 205-215
REFERENCES
1. WIELEBINSKI, R., 2004. The history of radio continuum surveys. In: B. Uyaniker, W. Reich, and R. Wielebinski, eds. The Magnetized Interstellar Medium. Katlenburg-Lindau: Copernicus GmbH, pp. 241–244.
2. REICH, P., 2003. Large scale surveys of the Galaxy. Acta Astronomica Sinica. vol. 44, pp. 130–135.
3. OLIVEIRA-COSTA, A., TEGMARK, M., GAENSLER, B. M., JONAS, J., LANDECKER, T. L. and REICH, P., 2008. A model of diffuse galactic radio emission from 10 MHz to 100 GHz. Mon. Not. R. Astron. Soc. vol. 388, is. 1, pp. 247–260. DOI: https://doi.org/10.1111/j.1365-2966.2008.13376.x
4. SUN, X. H., REICH, W., WAELKENS, A. and ENBLIN T. A., 2008. Radio observational constraints on Galactic 3Demission models. Astron. Astrophys. vol. 477, no. 2, pp. 573–592. DOI: https://doi.org/10.1051/0004-6361:20078671
5. MERTSCH, P. and SARKAR, S., 2013. Loops and spurs: The angular power spectrum of the Galactic synchrotron background. J. Cosmol. Astropart. Phys. is. 06, id. 041. DOI: https://doi.org/10.1088/1475-7516/2013/06/041
6. LONGAIR, M. S. and SYUNYAEV, R. A., 1971. Electromagnetic radiation in the universe. Uspekhi Fizicheskikh Nauk. vol. 105, pp. 41–96 (in Russian). DOI: https://doi.org/10.3367/UFNr.0105.197109b.0041
7. SINGAL, J., STAWARZ, L., LAWRENCE, A. and PETROSIAN, V., 2010. Sources of the radio background considered. Mon. Not. R. Astron. Soc. vol. 409, is. 3, pp. 1172–1182. DOI: https://doi.org/10.1111/j.1365-2966.2010.17382.x
8. SHAIN, C. A., 1959. Observation of extragalactic radio emission. In: R. N. Bracewell, ed. Paris symposium on radio astronomy. Stanford, CA: Stanford University Press, pp. 328–335. DOI: https://doi.org/10.1017/s0074180900051093
9. TURTLE, A. J., PUGH, G. F., KENDERDINE, S. and PAULINY-TOTH, I. I. K., 1962. The spectrum of the galactic radio emission. Mon. Not. R. Astron. Soc. vol. 124, is. 4, pp. 297–312. DOI: 0.1093/mnras/124.4.297
10. YATES, K. W. and WIELEBINSKI, R., 1966. Intensityfrequency dependence of the radio sky background. Aust. J. Phys. vol. 19, pp. 389–407. DOI: https://doi.org/10.1071/PH660389
11. BRIDLE, R. G., 1967. The spectrum of the radio background between 13 and 404 MHz. Mon. Not. R. Astron. Soc. vol. 136, is. 2, pp. 219–240. DOI: https://doi.org/10.1093/mnras/136.2.219
12. DAVIES, R. D., WATSON, R. A. and GUTIÉRREZ, C. M., 1996. Galactic synchrotron emission at high frequencies. Mon. Not. R. Astron. Soc. vol. 278, is. 4, pp. 925–939. DOI: https://doi.org/10.1093/mnras/278.4.925
13. REICH, P., REICH, W. and TESTORI, J. C., 2004. Spectral index variations of Galactic emission. In: B. Uyaniker, W. Reich, and R. Wielebinski, eds. The Magnetized Interstellar Medium. Katlenburg-Lindau: Copernicus GmbH, pp. 63–68.
14. WEHUS, I. K., FUSKELAND, U., ERIKSEN, H. K., BANDAY, A. J., DICKINSON, C., GHOSH T., GORSKI, K. M., LAWRENCE, C. R., LEAHY, J. P., MAINO, D., REICH, P. and REICH, W., 2014. Monopole and dipole estimation for multi-frequency sky maps by linear regression. ArXiv.org [online]. id. arXiv:1411.7616v1 [astro-ph.CO].
15. DE ZOTTI, G., MASSARDI, M., NEGRELLO, M. and WAL, J., 2009. Radio and millimeter continuum surveys and their astrophysical implications. Astron. Astrophys. Rev. vol. 18, is. 1, pp. 1–65.
16. GUZMÁN, A. E., MAY, J., ALVAREZ, H. and MAEDA, K., 2011. All-sky Galactic radiation at 45 MHz and spectral index between 45 and 408 MHz. Astron. Astrophys. vol. 525, id. A138. DOI: https://doi.org/10.1051/0004-6361/200913628
17. SUBRAHMANYAN, R. and COWSIK, R., 2013. Is there an Unaccounted for Excess in the Extragalactic Cosmic Radio Background? Astrophys. J. vol. 776, is. 1, id. 42. DOI: https://doi.org/10.1088/0004-637X/776/1/42
18. FORNENGO, N., LINEROS, R. A., REGIS, M. and TAOSO, M., 2014. The isotropic radio background revisited. J. Cosmol. Astropart. Phys. is. 04, id. 008. DOI: 10.1088/1475-7516/2014/04/0084
19. ABRAMENKOV, E. A., 1987. Investigation of regions of ionized hydrogen at decameter wavelengths. PhD. thesis ed. Institute of Radio Astronomy, Academy of Sciences of USSR (in Russian).
20. LONGAIR, M. S., 1995. The radio background emission – the long and shot of it. In: D. Calzetti, M. Livio, P. Madau, eds. Extragalactic Background Radiation. Cambridge: Cambridge Univ. Press, pp. 223–236.
21. SCHEUER, P. A. G., 1957. A statistical method for analyzing observations of faint radio stars. Math. Proc. Cambridge Phil. Soc. vol. 53, is. 3, pp. 764–773.
22. HEWISH, A., 1961. Extrapolation of the number-flux density relation of radio stars by Scheuer's statistical method. Mon. Not. R. Astron. Soc. vol. 123, is. 2, pp. 167–181. Doi: 10.1093/mnras/123.2.167123
23. GERVASI, M., TARTARI, A., ZANNONI, M., BOELLA, G. and SIRONI, G., 2008. The Contribution of the Unresolved Extragalactic Radio Sources to the Brightness Temperature of the Sky. Astrophys. J. vol. 682, no. 2, pp. 223–230. DOI: https://doi.org/10.1086/588628
24. VERNSTROM, T., SCOTT DOUGLAS and WALL, J. V., 2011. Contribution to the diffuse radio background from extragalactic radio sources. Mon. Not. R. Astron. Soc. vol. 415, is. 4, pp. 3641–3648. DOI: https://doi.org/10.1111/j.1365-2966.2011.18990.x
25. SOKOLOV, K. P., 1986. Space Distribution Parameters of Extragalactic Decameter Sources Counted at 25-MHz. Astronomicheskii Zhurnal. vol. 63, no. 3, pp. 426–433 (in Russian).
26. SOKOLOV, K. P., 1986. Cosmological evolution effects in extragalactic decameter sources. Pisma v Astronomicheskii Zhurnal. vol. 12, no. 4, pp. 259–265 (in Russian).
27. SOKOLOV, K. P., 1988. Determination of the parameters of the spatial distribution of extragalactic radio sources observed in the decameter range. P(D) analysis at 25 MHz. Astronomicheskii Zhurnal. vol. 65, no. 2, pp. 236–247 (in Russian).
28. BRAUDE, S. Ya., SIDORCHUK, K. M., SIDORCHUK, M. A., RASHKOVSKY, S. L., MIROSHNICHENKO, A. P. and ZAKHARENKO, S. M., 2006. Decameter Discrete Sources Survey of the Northern Sky using the UTR-2 Radio Telescope. In: Long Wavelength Astrophysics: 26th meeting of the IAU. Abstract book. Prague, Czech Republic, p. 370.
29. ZHANG, X., REICH, W., REICH, P. and WIELEBINSKI, R., 2003. New results on the spectral index–flux density relation from the WENSS/NVSS catalogs. Astron. Astrophys. vol. 404, no. 1, pp. 57–63. DOI: https://doi.org/10.1051/0004-6361:20030476
30. SEIFFERT, M., FIXSEN, D. J., KOGUT, A., LEVIN, S. M., LIMON, M., LUBIN, P. M., MIREL, P., SINGAL, J., VILLELA, T., WOLLACK, E. and WUENSCHE, C. A., 2009. Interpretation of the extragalactic radio background. ArXiv.org [online]. id. arXiv:0901.0559 [astro-ph.CO].
31. ROGER, R. S., COSTAIN, C. H., LANDECKER, T. L. and SWERDLYK, C. M., 1999. The radio emission from the Galaxy at 22 MHz. Astron. Astrophys. Suppl. Ser. Vol. 137, No. 1. – P. 7–19. DOI: https://doi.org/10.1051/aas:1999239
32. VASILENKO, N. M., SIDORCHUK, M. A., MUKHA, D. V., and ZAKHARENKO, S. M., 2006. Very Low Frequency Continuum Survey of the Northern Sky. In: Long Wavelength Astrophysics: 26th meeting of the IAU. Abstract book. Prague, Czech Republic, p. 370.
33. SIRONI, G., 1974. The spectrum of the galactic non-thermal background radiation. 1. Observations at 151.5 and 408 MHz. Mon. Not. R. Astron. Soc. vol. 166, is. 2, pp. 345–353. DOI: https://doi.org/10.1093/mnras/166.2.345
34. WEBSTER, A. 1975. The radio halo of the Galaxy. Mon. Not. R. Astron. Soc. vol. 171, is. 2, pp. 243–257. DOI: https://doi.org/10.1093/mnras/171.2.243
35. BEREZINSKII, V. S.,BULANOV, S. V., GINZBURG, V. L. (ed.), DOGIEL, V. A. and PTUSKIN, V. S, 1984. Astrophysics of cosmic rays. Moscow: Nauka (in Russian).
36. TOKAREV, Yu. V., 1970. Metagalactic background of radio emission. Izvesniya Vysshikh Uchebnykh Zavedenii, Radiofizika. vol. 13, pp. 1571–1574 (in Russian).
37. REICH, P. and REICH, W., 2008. Measuring and calibrating Galactic synchrotron emission. Proc. IAU. vol. 4, S259, pp. 603–612. DOI: https://doi.org/10.1017/S1743921309031433
38. HOGG, D. W., BOVY, J. and LANG, D., 2010. Data analysis recipes: Fitting a model to data. ArXiv.org [online]. id. arXiv:1008.4686v1 [astro-ph.IM].
39. BRAUDE, S. Ya., MEGN, A. V., RYABOV, B. P., SHARYKIN N. K. and ZHOUCK, I. N., 1978. Decametric survey of discrete sources in the Northern sky. I. The UTR-2 radio telescope: Experimental techniques and data processing. Astrophys. Space Sci. vol. 54, is. 1, pp. 3–36.
40. KRYMKIN, V. V., 1978. Observations of the Rosette nebula NGC2237 at decametric wavelength. Astrophys. Space Sci. vol. 54, is. 1, pp. 187–197.
41. VERNSTROM, T., DOUGLAS SCOTT, WALL, J. V., CONDON, J. J., COTTON, W. D., FOMALONT, E. B., KELLERMANN, K. I., MILLER, N. and PERLEY, R. A., 2014. Deep 3 GHz number counts from a P(D) fluctuation
analysis. Mon. Not. R. Astron. Soc. vol. 440, is. 3, pp. 2791–2809. DOI: https://doi.org/10.1093/mnras/stu470
42. VERNSTROM, T., NORRIS RAY, P., DOUGLAS SCOTT and WALL, J. V., 2015. The deep diffuse extragalactic radio sky at 1.75 GHz. Mon. Not. R. Astron. Soc. vol. 447, is. 3, pp. 2243–2260. DOI: https://doi.org/10.1093/mnras/stu2595
43. FIXSEN, D. J., KOGUT, A., LEVIN, S., LIMON, M., MIREl, P., SEIFFERT, M., SINGAl, J., WOLLACK, E., VILLELA, T. and WUENSCHE C. A., 2011. ARCADE 2 measurement of the absolute sky brightness at 3-90 GHz.
Astrophys. J. vol. 734, is.1, pp. 1–11. DOI: 10.1088/0004- 637X/734/1/5
Keywords
Full Text:
PDFCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)