THE BPD ENERGETIC PARTICLE DETECTOR AS PART OF THE SOLAR X-RAY PHOTOMETER ChemiX FOR THE “INTERHELIOPROBE” INTERPLANETARY MISSION

DOI: https://doi.org/10.15407/rpra20.03.247

O. V. Dudnik, E. V. Kurbatov, I. L. Zajtsevsky, J. Sylwester, M. Siarkowski, M. Kowaliński, P. Pоdgórski

Abstract


The Background Particle Detector (BPD) is an important block of the Polish-Ukrainian X-ray spectrophotometer ChemiX under development for the “Interhelioprobe” interplanetary mission. The BPD primary objective is to detect incoming charged particle fluxes, measure particle energy spectra and safeguard the instrument in case of emergency. The present work describes the BPD laboratory prototype and current results of adjustment and measurements of its important characteristics, in particular the analog signal processing unit and the source of secondary power supply unit. Laboratory benches designed for controlling the parameters of analog module and for characterization of small-sized organic and inorganic scintillation detectors of high energy charged particles are presented. The functional block diagram of the experimental model of digital signal processing line and information data streaming line designed using ProASIC3E М1А3РЕ1500 FPGA are introduced and explained. The results of respective digital modules’ tests performed by using experimental ModelISim Microsemi ME 10.2c program simulator are also presented.

Key words: high energy particles, interplanetary space, satellite device, scintillation detector, printed circuit board, programmable logic device

Manuscript submitted 23.02.2015

Radio phys. radio astron. 2015, 20(3): 247-260

REFERENCES

1. MURPHY, N., 2006. Measurement and Instrument Challenges for Future Solar and Heliospheric Missions. In: Joint Assembly AGU, GS, MAS, MSA, SEWG, UGM Abstracts. Baltimore, Maryland, 23-26 May 2006. AGU: Section "SPA-Magnetospheric Physics", Session "Technology Development for Sun / Solar System Connections Science I", SM33C-01.

2. KUZNETSOV V. D. and ZELENYI L. M., 2008. Space projects on Solar-terrestrial physics. Solar-Terrestrial Physics, vol. 1, no. 12, pp. 83–92 (in Russian).

3. KUZNETSOV, V. D., 2012. Solar-terrestrial physics and its application. Physics-Uspekhi, vol. 55, no. 3, pp. 305–314. (in Russian). DOI: https://doi.org/10.3367/UFNe.0182.201203h.0327

4. MULLER, D., MARSDEN, R. G., CYR, O. C. ST. and GILBERT, H. R., 2013. Solar Orbiter - Exploring the Sun–Heliosphere Connection. Sol. Phys., vol. 285, no. 1-2, pp. 25–70. DOI: https://doi.org/10.1007/s11207-012-0085-7

5. KINNISON, J., LOCKWOOD, M. K., FOX N., CONDE, R. and DRIESMAN, A., 2013. Solar Probe Plus: A mission to touch the Sun. In: IEEE Aerospace Conference Proceedings. Big Sky, Montana, 2-9 March 2013. IEEE: p. 1–11. DOI: https://doi.org/10.1109/AERO.2013.6496957

6. WU, J., SUN, W. Y., ZHENG, J. H., ZHANG, C., LIU, H., YAN, J. G., WANG C., WANG C. B. and WANG S., 2011. Imaging interplanetary CMEs at radio frequency from solar polar orbit. Adv. Space Res., vol. 48, pp. 943–954. DOI: https://doi.org/10.1016/j.asr.2011.05.001

7. WATANABE, T., 2014. The Solar-C Mission. In: SPIE conference 9143 "Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave" Proceedings. Montréal, Quebec, Canada, 22-27 June 2014. SPIE: Session "Solar System", abst. 91431O. DOI: https://doi.org/10.1117/12.2055366

8. KUZNETSOV, V. D., 2010. Space research into the Sun: current state and prospects. Solar-Terrestrial Physics, vol. 16., pp. 39–44 (in Russian).

9. KUZNETSOV V. and ZELENYI L., 2014. The Interhelioprobe Mission for Solar and Heliospheric Studies. In: 40th COSPAR Scientific Assembly Abstracts. Moscow, Russia, 2-10 August 2014. Moscow, COSPAR: Panel D2.4 "The Science with Future Solar missions, from the Sun to the Heliosphere", D2.4-3-14.

10. ZIMOVETS, I., ZELENYI, L., KUZNETSOV, V. and THE IHP TEAM, 2014. Current state of the Interhelioprobe mission. In: 14th European Solar Physics Meeting Programme and Abstract Book. Dublin, Ireland, 8-12 September 2014. Dublin, Ireland: Trinity College Dublin, Session 1 "New and Upcoming Heliospheric Observational and Data Assimilation Facilities", p. 12.

11. SYLWESTER, J., BĄKAŁA, J., PODGÓRSKI, P., KOWALIŃSKI, M., KORDYLEWSKI, Z., GBUREK, S., TRZEBINSKI, W., KUZNETSOV, V. D. and BOLDYREV, S. I., 2012. CHEMIX: a new generation solar soft X-ray Bragg spectrometer. In: V. D. KUZNETSOV, ed. INTERHELIOPROBE Project. Workshop Proceedings. Tarusa, 11–13 May 2011. Moscow, Russia: IZMIRAN, pp. 52–64 (in Russian).

12. SYLWESTER, J., ZIMOVETS, I., KOWALIŃSKI, M., BĄKAŁA J., SIARKOWSKI, M., TRZEBINSKI, W., KUZNETSOV, V. and SZAFORZ, Z., 2014. ChemiX: a new generation bent crystal spectrometer for Interhelioprobe mission to the Sun. In: 40th COSPAR Scientific Assembly Abstracts. Moscow, Russia, 2-10 August 2014. Moscow, COSPAR: Panel D2.4 "The Science with Future Solar missions, from the Sun to the Heliosphere", D2.4-34-14.

13. SYLWESTER, J., SIARKOWSKI, M., SZAFORZ, Z., BĄKAŁA, J., DUDNIK, O., KUZNETSOV, V. D., ZIMOVETS, I. V. and KUZIN, S., 2014. ChemiX – the soft X-ray Bragg spectrometer under development for the Interhelioprobe Mission. In: 13th RHESSI Workshop Abstracts. Brugg/Windisch, Switzerland, 1-4 April 2014. Brugg/Windish, Switzerland: University of Applied Sciences Northwestern Switzerland, Session "Current and Future Instrumentation", p. 17.

14. SYLWESTER, J., KORDYLEWSKI, Z., PŁOCIENIAK, S., SIARKOWSKI, M., KOWALIŃSKI, M., NOWAK, S., TRZEBIŃSKI, W., STĘŚLICKI, M., SYLWESTER, B., STAŃCZYK, E., ZAWERBNY, R., SZAFORZ, Z., PHILLIPS, K. J. H., FĄRNIK, F. and STEPANOV, A., 2015. X-ray Flare Spectra from the DIOGENESS Spectrometer and its concept applied to ChemiX on the Interhelioprobe spacecraft. Sol. Phys. [online]. 20 January, pp. 1–15. DOI: https://doi.org/10.1007/s11207-014-0644-1

15. DUDNIK O. V., SYLWESTER J., SIARKOWSKI M., KOWALIŃSKI M., KURBATOV E. V. and TITOV K. G., 2013. The high energy charge particle detector module in the ChemiX instrument aboard Interhelioprobe mission: the goals, concept and design. In: 13th Ukrainian Conference on Space Research Abstracts. Evpatoria, Crimea, Ukraine, 2-6 September 2013. Kyiv: Space Research Institute, p. 123.

16. DUDNIK, O. V., PRIETO, M., KURBATOV, E. V., SANCHEZ, S., TIMAKOVA, T. G., TITOV, K. G. and PARRA, P., 2012. Asmall-sized device for monitoring of high-energy electrons and nuclei in the outer space. Space Science and Technology, vol. 18, no. 6, pp. 22–34 (in Russian).

17. DUDNIK, O. V., PRIETO, M., KURBATOV, E. V., SANCHEZ S., TIMAKOVA, T. G., SPASSKY, A. V., DUBINA, V. N. and PARRA, P., 2013. SIDRA instrument for measurements of particle fluxes at satellite altitudes. Laboratory prototype. Solar System Research, vol. 47, no. 1, pp. 58–65. DOI: https://doi.org/10.1134/S0038094612060019

18. DUDNIK, O. V., KURBATOV, E. V, SYLWESTER, J., SIARKOWSKI, M., KOWALIŃSKI, M., TARASOV, V. O., ANDRYUSHENKO, L. A., ZAJTSEVSKY, I. L. and VALTONEN, E., 2014. Development of small–sized SIDRA device for monitoring of charged particle fluxes in space. In: O. P. FEDOROV, ed. Space Research in Ukraine, 2012–2014. The Report to the COSPAR. Kyiv, Ukraine: Publ. House "Akademperiodika", pp. 62–67.

19. DUDNIK, O. V., BILOGUB, V. V., KURBATOV, E. V., TIMAKOVA, T. G., DUBINA, V. N., MEZIAT, D. and PRIETO, M., 2009. Compact on-board instrument SIDRA for measurement of particle fluxes & dose rates – concept and first model. In: 9th Ukrainian Conference on Space Research Abstracts. Evpatoria, Crimea, Ukraine, 31 August – 5 September 2009. Kyiv: Space Research Institute, p. 78.

20. DUDNIK, O. V., PRIETO, M., KURBATOV, E. V., SANCHEZ, S., TIMAKOVA, T. G., DUBINA, V. N. and PARRA, P., 2011. First concept of compact instrument SIDRA for measurements of particle fluxes in the space. Journal of Kharkiv National University, phys. series "Nuclei, Particles, Fields", vol. 969, no. 3(51), pp. 62–66 (in Russian).

21. DUDNIK, O. V., PRIETO, M., KURBATOV, E. V., SANCHEZ, S., TIMAKOVA, T. G., DUBINA, V. N. and PARRA, P., 2012. Onboard instrument SIDRA prototype for measurements of radiation environment in the space. In: 39th COSPAR Scientific Assembly Abstracts. Mysore, India. 14-22 July 2012. COSPAR: Session H0.3 "Technical Development of Instrumentation for Current Missions", STW-B-153 H0.3-0023-12, p. 106.

22. DUDNIK, O. V., PRIETO, M., KURBATOV, E. V., TITOV, K. G., TARASOV, V. O., ANDRYUSHENKO, L. A., SANCHEZ, S. and PARRA, P., 2012. Approaches to signal processing from the light scintillation and semiconductor detectors in the compact satellite instrument SIDRA for monitoring of high energy charge particles. In: 12th Ukrainian Conference on Space Research Abstracts. Evpatoria, Crimea, Ukraine, 3-7 September 2012. Kyiv: Space Research Institute, p. 102.

23. DUDNIK, O. V., PRIETO, M., KURBATOV, E. V., SANCHEZ, S., TITOV, K. G., SYLWESTER, J., GBUREK, S. and PODGÓRSKI, P., 2013. Functional capabilities of the breadboard model of SIDRA satellite-borne instrument. Problems of Atomic Science and Technology, Series "Nuclear Physics Investigations", vol. 3(85), no. 60, pp. 289–296.

24. DUDNIK, O. V., KURBATOV, E. V., AVILOV, A. M., PRIETO, M., SANCHEZ, S., SPASSKY, A. V., TITOV, K. G., SYLWESTER, J., GBUREK, S. and PODGÓRSKI, P., 2013. Results of the first tests of the SIDRA satellite-borne instrument breadboard model. Problems of Atomic Science and Technology, Series "Nuclear Physics Investigations", vol. 3(85), no. 60, pp. 297–302.

25. PRIETO, M., DUDNIK, O. V., SANCHEZ, S., KURBATOV, E. V., TIMAKOVA, T. G., TEJEDOR, J. I. G. and TITOV, K. G., 2013. Breadboard model of the SIDRA instrument designed for the measurement of charged particle fluxes in space. J. Instrum., vol. 8, no. 04, id. T04002. DOI: https://doi.org/10.1088/1748-0221/8/04/T04002

26. ANDRYUSHENKO, L. A., TARASOV, V. O., GRINYOV, B. V., DUDNIK, O. V. and KURBATOV, E. V., 2013. Scintillation detector on the base of organic crystal. Patent of Ukraine UA 86274 U (in Ukrainian).

27. KURBATOV, E. V., DUDNIK, O. V., TITOV, K. G., ANDRYUSHENKO, L. A., BOYARINTSEV A. YU., TARASOV, V. A. and VALTONEN, E., 2013. Comparative characteristics of assemblies of small-sized p-terphenyl scintillators and silicon photodetectors. In: XI Conference on high energy physics, nuclear physics and accelerators Abstracts. Kharkiv, Ukraine, 11-15 March, 2013. Kharkiv, Ukraine: National Science Center "Kharkov Institute of Physics and Technology", P. 99.


Keywords


high energy particles; interplanetary space; satellite device; scintillation detector; printed circuit board; programmable logic device

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)