THE 2-MM RANGE RECEIVING MODULE FOR OBSERVATIONS OF ATMOSPHERIC OZONE EMISSION LINE AT 142.2 GHz
Abstract
A low-noise uncooled receiver was designed and constructed for measurements of the atmospheric ozone spectral line at 142.2 GHz. The design has shown the double-sideband (DSB) receiver noise temperature of about 350 K within 130 to 150 GHz. Critical construction features of the basic units (mixer, intermediate frequency amplifier, and diplexer) are described. Noise characteristics showed by the receiver are the best in the class of uncooled heterodyne receivers of the 2-mm wavelengths.
Key words: mm-waves, pseudomorphic high electron-mobility transistor (PHEMT), mixer, atmospheric gases
Manuscript submitted 18.06.2015
Radio phys. radio astron. 2015, 20(3): 261-268
REFERENCES
1. BEIG, G., KECKHUT, P., LOWE, R. P., ROBLE, R. G., MLYNCZAK, M. G., SCHEER, J., FOMICHEV, V. I., OFFERMANN, D., FRENCH, W. J. R., SHEPHERD, M. G., SEMENOV, A. I., REMSBERG, E. E., SHE, C. Y., LÜBKEN, F. J., BREMER, J., CLEMESHA, B. R., STEGMAN, J., SIGERNES, F. and FADNAVIS, S., 2003. Review of mesospheric temperature trends. Rev. Geophys. vol. 41, no. 4, pp. 1015–1055. DOI: https://doi.org/10.1029/2002RG000121
2. KOSTSOV, V. S. and TIMOFEYEV, YU. M., 2005. Mesospheric ozone according to data of satellite experiment CRISTA-1: 2. Spatial distribution and diurnal variations. Izvestia RAN. Fizika atmosfery i okeana. vol. 41, no. 2, pp. 72–83 (in Russian).
3. PARDO, J. R., CERNICHARO, J. and PAGANI, L., 1998. Ground-based spectroscopic observations of atmospheric ozone from 142 to 359 GHz in southern Europe. J. Geophys. Res. vol.103, no. D6, pp. 6189–6202. DOI: https://doi.org/10.1029/97JD03628
4. RÜFENACHT, R., KÄMPFER., N., and MURK, A., 2012. First middle-atmospheric zonal wind profile measurements with a new ground-based microwave Doppler-spectro-radiometer. Atmos. Meas. Tech. vol. 5, no. 11, pp. 2647–2659. DOI: https://doi.org/10.5194/amt-5-2647-2012
5. BURROWS, S., MARTIN, C. and ROBERTS, E., 2007. High-latitude remote sensing of mesospheric wind speeds and carbon monoxide. J. Geophys. Res. vol. 112, no. D17, id. D17109. DOI: https://doi.org/10.1029/2006JD007993
6. PALM, M., HOFFMAN, C. G., GOLCHERT, S. H. W., and NORTHOLT, J., 2010. The ground-based MW radiometer OZORAM on Spitsbergen – description and status of stratospheric and mesospheric O3-measurements. Atmos. Meas. Tech. vol. 3, pp. 1533–1545. DOI: https://doi.org/10.5194/amt-3-1533-2010
7. FORKMAN, P., CHRISTENSEN, O. M., ERIKSSON, P., URBAN, J. and FUNKE, B., 2012. Six years of mesospheric CO estimated from ground-based frequencyswitched microwave radiometry at 57º N compared with satellite instruments. Atmos. Meas. Tech. vol. 5, pp. 2827–2841. DOI: https://doi.org/10.5194/amt-5-2827-2012
8. ROZANOV, S. B., LUKIN, A. N. and SOLOMONOV, S. V., 1998. Low-noise cooled planar Schottky diode receivers for ground-based spectral ozone measurements at 142 GHz. Int. J. Infrared Millimeter Waves. vol. 19, no. 2, pp. 195–222. DOI: https://doi.org/10.1023/A:1022567523647
9. PIDDYACHIY, V., KOROLEV, A. and SHULGA, V., 2005. Avery low-noise integrated 3mm-wave Schottky diode mixer and PHEMT IF amplifier. Int. J. Infrared Millimeter Waves. vol. 26, no. 10, pp. 1381–1388. DOI: https://doi.org/10.1007/s10762-005-8436-1
10. PIDDYACHIY, V., SHULGA, V., KOROLEV, A. and MYSHENKO, V.,2005. High doping density Schottky diodes in the 3mm wavelength cryogenic heterodyne receiver. Int. J. Infrared Millimeter Waves. vol. 26, no. 9, pp. 1307–1315. DOI: https://doi.org/10.1007/s10762-005-7605-6
11. FORKMAN, P., PIDDYACHIY, V., KOROLEV, A., MYSHENKO, V., MYSHENKO, A., and SHULGA, V., 2006. An uncooled very low noise Schottky diode receiver frontend for middle atmospheric ozone and carbon monoxides. Int. J. Infrared Millimeter Waves. vol. 27, no. 1, pp. 25–35. DOI: https://doi.org/10.1007/s10762-006-9061-3
12. PIDDYACHIY, V., SHULGA, V., MYSHENKO, V., KOROLEV, A., MYSHENKO, A., ANTYUFEYEV, A., POLADICH, A. and SHKODIN, V., 2010. 3-mm wave spectroradiometer for studies of atmospheric trace gases. Radiophys. Quantum Electron. vol. 53, no. 5,6, pp. 326–333.
13. ALDERT VAN DER ZIEL, 1970. Noise. Sources, characterization, measurement. Englewood Cliffts, N. J.: Prentis-Hall.
14. KOROLEV, A. M. 2011. An intermediate frequency amplifier for a radio astronomy superheterodyne receiver. Instruments and Experimental Techniques. vol. 54, no. 1, pp. 81–83.
15. Korolev, A. M. and Shulga, V. M., 2011. Unsaturated Regime as Alternative Method to Provide Stability of Low-Noise Amplifier on High-Electron-Mobility Transistors. Radio Phys. Radio Astron. vol. 16, no. 4, pp. 433–439 (in Russian).
16. KOROLEV, A. M. and SHULGA, V. M., 2003. Ultra-Low-Noise Operation of Broadband Uncooled PHEMT Amplifier in Ultrahigh-Frequency Band. Radio Phys. Radio Astron. vol. 8, no. 1, pp. 21–27 (in Russian).
Keywords
Full Text:
PDFCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)