THE ROLE OF RADIO WAVE PROPAGATION EFFECTS IN THE SOLAR CORONA TO INTERPRET THE BEHIND-LIMB BURSTS
Abstract
PACS number: 96.60.-j
Purpose: The radio emission propagation of solar radio bursts in the solar corona which sources are located on the far side of the Sun relative to the observer on Earth is studied.
Design/methodology/approach: Using the piecewise linear approximation of the beam path in various models of electron density in corona, we find out the impact of these models on the propagation effects of radio emission from the far side of the Sun in approximation of geometric optics.
Findings: It is shown that if as a model of the solar corona one chooses the plasma density decreasing in solar corona with distance from photosphere, the radiation of limb-behind burst sources cannot be recorded by ground-based radio astronomy instruments due to radio emission reflection in the direction outward the Earth.
Conclusions: The arguments to explain the possibility of groundbased observations of limb-behind bursts due to the influence of coronal mass ejections on the solar corona density from active spots near the solar limb are proposed.
Key words: Sun, upper corona, decameter radio emission, electron density distribution, inhomogeneous layered medium
Manuscript submitted 24.12.2015
Radio phys. radio astron. 2016, 21(1): 3-13
REFERENCES
1. MEL'NIK, V. N., KONOVALENKO, A. A., ABRANIN, E. P., DOROVSKYY, V. V., STANISLAVSKY, A. A., RUCKER, H. O. and LECACHEUX, A., 2005. Solar sporadic radio emission in the decametre waveband. Astron. Astrophys. Trans. vol. 24, is. 5, pp. 391–401. DOI: https://doi.org/10.1080/10556790600568854
2. ZHELEZNYAKOV, V. V., 1970. Radio Emission of the Sun & Planets.Oxford: Pergamon Press.
3. STANISLAVSKY, A. A., KONOVALENKO, A. A., KOVAL, A. A., DOROVSKYY, V. V., ZARKA, P. and RUCKER, H. O., 2015. Coronal Magnetic Field Strength from Decameter Zebra-Pattern Observations: Complementarity with Band-Splitting Measurements of an Associated Type II Burst. Sol. Phys. vol. 290, is. 1, pp. 201–218. DOI: https://doi.org/10.1007/s11207-014-0620-9
4. BRAZHENKO, A. I., MELNIK, V. N., KONOVALENKO, A. A., DOROVSKYY, V. V., FRANTSUZENKO, A. V., RUCKER, H. O., PANCHENKO, M. and STANISLAVSKY, A. A., 2012. An unusual burst at decameter wavelengths. 1. Observations. Radio Physics and Radio Astronomy. vol. 17, no. 2, pp. 99–105 (in Russian). https://doi.org/10.1615/radiophysicsradioastronomy.v3.i4.10
5. BRAZHENKO, A. I., MELNIK, V. N., FRANTSUZENKO, A. V., RUCKER, H. O. and PANCHENKO, M., 2015. Unusual solar decameter radio bursts with high frequency cut off. Radio Phys. Radio Astron. vol. 20, no. 1, pp. 10–19 (in Russian).
6. MELNIK, V. N., BRAZHENKO, A. I., KONOVALENKO, A. A., DOROVSKYY, V. V., FRANTSUZENKO, A. V., RUCKER, H. O., PANCHENKO, M. and STANISLAVSKY, A. A., 2012. An unusual burst at decameter wavelengths. 2. Interpretation. Radio Phys. Radio Astron. vol. 17, no. 3, pp. 199–206 (in Russian).
7. RAMESH, R., 2000. Low frequency radio emission from the "quiet" Sun. J. Astrophys. Astron. vol. 21, is. 3, pp. 237–240. DOI: https://doi.org/10.1007/BF02702398
8. STANISLAVSKY, A. A. and KOVAL, A. A., 2013. Solar corona elliptical model. Radio Phys. Radio Astron. vol. 18, no. 1, pp. 3–11 (in Ukrainian).
9. BRACEWELL, R. N. and PRESTON, G. W., 1956. Radio reflection and refraction phenomena in the high solar corona. Astrophys. J. vol. 123, pp. 14–30. DOI: https://doi.org/10.1086/146125
10. THEJAPPA, G. and MACDOWALL, R. J., 2010. Localization of a type III radio burst observed the STEREO spacecraft. Astrophys. J. vol. 720, no. 2, pp. 1395–1404. DOI: https://doi.org/10.1088/0004-637X/720/2/1395
11. SHAMPINE, L. F., 2008. Vectorized adaptive quadrature in MATLAB. J. Comput. Appl. Math. vol. 211, is. 2, pp. 131–140. DOI: https://doi.org/10.1016/j.cam.2006.11.021
12. NEWKIRK, G., Jr., 1959. Amodel of the electron corona with reference to radio observations. In: R. N. Bracewell, ed. IAU Symposium no. 9 and URSI Symposium no. 1. Stanford:StanfordUniversity Press, pp. 149–158.
13. BAUMBACH, S., 1937. Strahlung, Ergiebkeit und Elektronendicht der Sonnekorona. Astron. Nachr. vol. 263, pp. 121–134.
https://doi.org/10.1002/asna.19372630602
14. ALLEN, C. W., 1947. Interpretation of electron densities from coronal brightness. Mon. Not. Roy. Astron. Soc. vol. 107, iss. 5-6, pp. 426–432. DOI: https://doi.org/10.1093/mnras/107.5-6.426
15. MANN, G., JANSEN, F., MACDOWALL, R. J., KAISER,
M. L. and STONE, R. G.,1999. Aheliospheric density model and type III radio bursts. Astron. Astrophys. vol. 348, pp. 614–620.
16. SAITO, K., MAKITA, M., NISHI, K. and HATA, S., 1970. Anon-sperical axisymmetric model of the solar K corona of the minimum type. Ann. Tokyo Astron. Obs. vol. 12, pp. 51–173.
17. KATHIRAVAN, C., RAMESH, R. and SUBRAMANIAN, K. R., 2002, Metric Radio Observations and Ray-tracing Analysis of the Onset Phase of a Solar Eruptive Event. Astrophys. J. vol. 567, no. 1, pp. L93–L95. DOI:
https://doi.org/10.1086/339801
19. REEVES, K. K., GIBSON, S. E., KUCERA, T. A., HUDSON, H. S. and KANO, R., 2012. Thermal Properties of a Solar Coronal Cavity Observed with the X-Ray Telescope on Hinode. Astrophys. J. vol. 746, no. 2, id. 146. DOI: https://doi.org/10.1088/0004-637X/746/2/146
20. ASCHWANDEN, M., 2005. Physics of the Solar Corona: An Introduction with Problems and Solutions. Chichester: Springer Praxis Books.
21. NAJMI, A., MILIKH, G., YAMPOLSKI, Y. M., KOLOSKOV, A. V., SOPIN, A. A., ZALIZOVSKI, A., BERNHARDT, P., BRICZINSKI, S., SIEFRING, C., CHIANG, K., MORTON, Y., TAYLOR, S., MAHMOUDIAN, A., BRISTOW, W., RUOHONIEMI, M. and PAPADOPOULOS, K., 2015. Studies of the ionospheric turbulence excited by the fourth gyroharmonic at HAARP. J. Geophys. Res. Space Phys. vol. 120, is. 8, pp. 6646–6660. DOI: https://doi.org/10.1002/2015JA021341
Keywords
Full Text:
PDFCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)