ASTROPHYSICAL STUDIES WITH SMALL LOW-FREQUENCY RADIO TELESCOPES OF NEW GENERATION

DOI: https://doi.org/10.15407/rpra21.02.083

A. A. Konovalenko, S. M. Yerin, I. M. Bubnov, P. L. Tokarsky, V. V. Zakharenko, O. M. Ulyanov, M. A. Sidorchuk, S. V. Stepkin, A. O. Gridin, G. V. Kvasov, V. L. Koliadin, V. M. Melnik, V. V. Dorovskyy, M. M. Kalinichenko, G. V. Litvinenko, P. Zarka, L. Denis, J. Girard, H. O. Rucker, M. Panchenko, A. A. Stanislavsky, O. D. Khristenko, D. V. Mukha, O. M. Reznichenko, V. M. Lisachenko, V. V. Bortsov, A. I. Brazhenko, I. Y. Vasylieva, A. O. Skoryk, A. I. Shevtsova, K. Y. Mylostna

Abstract


PACS numbers: 95.55.Jz, 95.30.-k, 95.55.-n

Purpose: define and theoretically substantiate the range of astrophysical problems that may be efficiently solved using small antenna arrays.

Design/methodology/approach: Observation parameters and configurations of a set of small antenna arrays included in the future Giant Ukrainian radio telescope, have been derived based on the theoretical analysis and scientific results obtained by UTR-2 and URAN radio telescopes.

Results: We have proved that a wide scope of problems can be efficiently solved by small low-frequency antenna arrays, ranging from Solar studies to the search for cosmological effects associated with neutral hydrogen spectral line in the early Universe at high red shifts. For each study program, we have calculated the desired observation parameters (integration time, time and frequency resolutions), indicated the required antenna configurations and operating modes (interferometric or additive).

Conclusions: We have shown that at the construction stage of the Giant Ukrainian radio telescope and gradual commissioning of its new sections, we can solve a number of important astrophysical problems. As the new sections are being added, the observation techniques and data processing methods will constantly be improving.

Key words: astrophysics, decameter and meter radio waves, smallsized radio telescope

Manuscript submitted 14.04.2016

Radio phys. radio astron. 2016, 21(2): 83-131 

REFERENCES

1. VAN HAARLEM, M. P., WISE, M. W., GUNST, A. W., HEALD, G., McKEAN, J. P., HESSELS, J. W. T., DE BRUYN, A. G., NIJBOER, R., SWINBANK, J., FAL LOWS, R., BRENTJENS, M., NELLES, A., BECK, R., FALCKE, H., FENDER, R., HÖRANDEL, J., KOOPMANS, L. V. E., MANN, G., MILEY, G., RÖTTGERING, H., STAPPERS, B. W., WIJERS, R. A. M. J., ZAROUBI, S., VAN DEN AKKER, M., ALEXOV, A., ANDERSON, J., ANDERSON, K., VAN ARDENNE, A., ARTS, M., ASGEKAR, A., AVRUCH, I. M., BATEJAT, F., BÄHREN, L., BELL, M. E., BELL, M. R., VAN BEMMEL, I., BENNEMA, P., BENTUM, M. J., BERNARDI, G., BEST, P., BÎRZAN, L., BONAFEDE, A., BOONSTRA, A.-J., BRAUN, R., BREGMAN, J., BREITLING, F., VAN DE BRINK, R. H., BRODERICK, J., BROEKEMA, P. C., BROUW, W. N., BRÜGGEN, M., BUTCHER, H. R., VAN CAPPELLEN, W., CIARDI, B., COENEN, T., CONWAY, J., COOLEN, A., CORSTANJE, A., DAMSTRA, S., DAVIES, O., DELLER, A. T., DETTMAR, R.-J., VAN DIEPEN, G., DIJKSTRA, K., DONKER, P., DOORDUIN, A., DROMER, J., DROST, M., VAN DUIN, A., EISLÖFFEL, J., VAN ENST, J., FERRARI, C., FRIESWIJK, W., GANKEMA, H., GARRETT, M. A., DE GASPERIN, F., GERBERS, M., DE GEUS, E., GRIEßMEIER, J.-M., GRIT, T., GRUPPEN, P., HAMAKER, J. P., HASSALL, T., HOEFT, M., HOLTIES, H. A., HORNEFFER, A., VAN DER HORST, A., VAN HOUWELINGEN, A., HUIJGEN, A., IACOBELLI, M., INTEMA, H., JACKSON, N., JELIC, V., DE JONG, A., JUETTE, E., KANT, D., KARASTERGIOU, A., KOERS, A., KOLLEN, H., KONDRATIEV, V. I., KOOISTRA, E., KOOPMAN, Y., KOSTER, A., KUNIYOSHI, M., KRAMER, M., KUPER, G., LAMBROPOULOS, P., LAW, C., VAN LEEUWEN, J., LEMAITRE, J., LOOSE, M., MAAT, P., MACARIO, G., MARKOFF, S., MASTERS, J., MCFADDEN, R. A., MCKAY-BUKOWSKI, D., MEIJERING, H., MEULMAN, H., MEVIUS, M., MIDDELBERG, E., MILLENAAR, R., MILLER-JONES, J. C. A., MOHAN, R. N., MOL, J. D., MORAWIETZ, J., MORGANT, I. R., MULCAHY, D. D., MULDER, E., MUNK, H., NIEUWENHUIS, L., VAN NIEUWPOORT, R., NOORDAM, J. E., NORDEN, M., NOUTSOS, A., OFFRINGA, A. R., OLOFSSON, H., OMAR, A., ORRÚ, E., OVEREEM, R., PAAS, H., PANDEY-POMMIER, M., PANDEY, V. N., PIZZO, R., POLATIDIS, A., RAFFERTY, D., RAWLINGS, S., REICH, W., DE REIJER, J.-P., REITSMA, J., RENTING, G. A., RIEMERSV, P., ROL, E., ROMEIN, J. W., ROOSJEN, J., RUITER, M., SCAIFE, A., VAN DER SCHAAF, K., SCHEERS, B., SCHELLARTV, P., SCHOENMAKERS, A., SCHOONDERBEEK, G., SERYLAK, M., SHULEVSKI, A., SLUMAN, J., SMIRNOV, O., SOBEY, C., SPREEUW, H., STEINMETZ, M., STERKS, C. G. M., STIEPEL, H.-J., STUURWOLD, K., TAGGER, M., TANG, Y., TASSE, C., THOMAS, I., THOUDAM, S., TORIBIO, M. C., VAN DER TOL, B., USOV, O., VAN VEELEN, M., VAN DER VEEN, A.-J., TER VEEN, S., VERBIEST, J. P. W., VERMEULEN, R., VERMAAS, N., VOCKS, C., VOGT, C., DE VOS, M., VAN DER WAL, E., VAN WEEREN, R., WEGGEMANS, H., WELTEVREDE, P., WHITE, S., WIJNHOLDS, S. J., WILHELMSSON, T., WUCKNITZ, O., YATAWATTA, S., ZARKA, P., ZENSUS, A. and VAN ZWIETEN, J., 2013. LOFAR: the low-frequency array. Astron. Astrophys. vol. 556, id. A2. DOI:10.1051/0004-6361/201220873

2. TAYLOR, G. B., ELLINGSON, S. W., KASSIM, N. E., CRAIG, J., DOWELL, J., WOLFE, C. N., HARTMAN, J., BERNARDI, G., CLARKE, T., COHEN, A., DALAL, N. P., ERICKSON, W. C., HICKS, B., GREENHILL, L. J., JACOBY, B., LANE, W., LAZIO, J., MITCHELL, D., NAVARRO, R., ORD, S. M., PIHLSTROM, Y., POLISENSKY, E., RAY, P. S., RICKARD, L. J., SCHINZEL, F. K., SCHMITT, H., SIGMAN, E., SORIANO, M., STEWART, K. P., STOVALL, K., TREMBLAY, S., WANG, D., WEILER, K. W., WHITE, S. and WOOD, D. L., 2012. First Light for the First Station of the Long Wavelength Array. J. Astron. Instrum. vol. 1, pp. 1–56. DOI: https://doi.org/10.1142/S2251171712500043

3. BRAUDE, S. Y., MEGN, A. V. and SODIN, L. G., 1978. Decameter wave band radio telescope UTR-2. In: Anteny. Moscow, USSR: Svyaz'. no. 26, pp. 3–15 (in Russian).

4. BRAUDE, S. Y., MEGN, A. V., RYABOV, B. P., SHARYKIN, N. K. and ZHOUCK, I. N., 1978. Decametric survey of discrete sources in the Northern sky I. The UTR-2 Radio Telescope. Experimental techniques and data processing. Astrophys. Space Sci. vol. 54, is. 1, pp. 3–36. DOI: https://doi.org/10.1007/BF00637902

5. MEGN, A. V., BRAUDE, S. Y., RASHKOVSKIY, S. L., SHARYKIN, N. K., SHEPELEV, V. A., INUTIN, G. A., KHRISTENKO, A. D., BULATSEN, V. G., BRAZHENKO, A. I., KOSHOVIY, V. V., ROMANCHEV, Y. V., THESEVICH, V. P. and GALANIN, V. V., 1997. URAN System of the Decametric Interferometers (I). Radio Physics and Radio Astronomy. vol. 2, no. 4, pp. 385–402 (in Russian).

6. BRUCK, Yu. M. and USTIMENKO, B. Yu., 1973. Decametric Pulse Radioemission from PSR 0809, PSR 1133, and PSR 1919. Nature. vol. 242, pp. 58–59. DOI: https://doi.org/10.1038/physci242058a0

7. KONOVALENKO, A. A. and SODIN, L. G., 1981. The 26.13 MHz absorption line in the direction of Cassiopeia A. Nature. vol. 294, no. 12, pp. 135–136. DOI: https://doi.org/10.1038/294135a0

8. ZAKHARENKO, V., MYLOSTNA, K., KONOVALENKO, A., ZARKA, P., FISCHER, G., GRIEßMEIER, J.-M., LITVINENKO, G., RUCKER, H., SIDORCHUK, M., RYABOV, B., VAVRIV, D., RYABOV, V., CECCONI, B., COFFRE, A., DENIS, L., FABRICE, C., PALLIER, L., SCHNEIDER, J., KOZHYN, R., VINOGRADOV, V., MUKHA, D., WEBER, R., SHEVCHENKO, V. and NIKOLAENKO, V., 2012. Ground-based and spacecraft observations of lightning activity on Saturn. Planet. Space Sci. vol. 61, no. 1, pp. 53–59. DOI: https://doi.org/10.1016/j.pss.2011.07.021

9. KONOVALENKO O. O., 2014. About the implementation of target complex program of scientific researches of NAS of Ukraine "Modernization of the radio telescope UTR-2 and future development of decameter radio astronomy in Ukraine" (Materials of scientific report at meeting of Presidium of NAS of Ukraine on January 29, 2014.). Bulletin of NAS of Ukraine. no. 3, pp. 20–30 (in Ukrainian).

10. KONOVALENKO, A. A., FALKOVICH, I. S., KALINICHENKO, N. N., GRIDIN, A. A., BUBNOV, I. N., LECACHEUX, A., ROSOLEN, C. and RUCKER, H. O., 2003. Thirty-Element Active Antenna Array as a Prototype of a Huge Low-Frequency Radio Telescope. Exp. Astron. vol. 16, is. 3, pp. 149–164. DOI: https://doi.org/10.1007/s10686-003-0030-8

11. FALKOVICH, I. S., KONOVALENKO, A. A., GRIDIN, A. A., SODIN, L. G., BUBNOV, I. N., KALINI CHENKO, N. N., RASHKOVSKII, S. L., MUKHA, D. V. and TOKARSKY, P. L., 2011. Wide-band high linearity active dipole for low frequency radio astronomy. Exp. Astron.vol. 32, is. 2, pp. 127–145. DOI: https://doi.org/10.1007/s10686-011-9256-z

12. STANISLAVSKY, A. A., BUBNOV, I. N., KONOVALENKO, A. A., GRIDIN, A. A., SHEVCHENKO, V. V., STANISLAVSKY, L. A., MUKHA, D. V. and KOVAL, A. A., 2014. First radio astronomy examination of the low-frequency broadband active antenna subarray. Adv. Astron. vol. 2014, id. 517058. DOI: https://doi.org/10.1155/2014/517058

13. ZARKA, P., GIRARD, J. N., TAGGER, M., DENIS, L., AGHANIM, N., ALSAC, L., ARNAUD, M., BARTH, S., BOONE, F., BOSSE, S., CAPAYROU, D., CAPDESSUS, C., CECCONI, B., CHARRIER, D., COFFRE, A., COGNARD, I., COMBES, F., CORBEL, S., CORNILLEAU-WEHRLIN, N., COTTET, P., DOLE, H., DUMEZ-VIOU, C., FALKOVYCH, I., FERRARI, C., FLOQUET, F., GARNIER, S., GEORGES, G., GOND, B., GRESPIER, N., GRIEßMEIER J.-M., JOLY S., KONOVALENKO A., LAMY L., LEHNERT M., POMMIER M., RUCKER H., SANDRÉ P., SEMELIN, B., TAFFOUREAU, C., TASSE, C., THÉTAS, E., THEUREAU, G., TOKARSKY, P., VAN DRIEL, W., VIMON, J.-B. and WEBER, R., 2012. LSS/NenuFAR: The LOFAR Super Station project in Nançay. In: S. BOISSIER, P. de LAVERNY, N. NARDETTO, R. SAMADI, D. VALLS-GABAUD and H. WOZNIAK, eds. SF2A 2012: Proceedings of the annual meeting of the French Society of Astronomy and Astrophysics. Nice, France, pp. 687–694. 

14. ZARKA, P., TAGGER, M., DENIS, L., GIRARD, J. N., KONOVALENKO, A., ATEMKENG, M., ARNAUD, M., AZARIAN, S., BARSUGLIA, M., BONAFEDE, A., BOONE, F., BOSMA, A., BOYER, R., BRANCHESI, M., BRIAND, C., CECCONI, B., CÉLESTIN, S., CHARRIER, D., CHASSANDE-MOTTIN, E., COFFRE, A., COGNARD, I., COMBES, F., CORBEL, S., COURTE, C., DABBECH, A., DAIBOO, S., DALLIER, R., DUMEZVIOU, C., KORSO, M. N. E., FALGARONE, E., FALKOVYCH, I., FERRARI, A., FERRARI, C., FERRIÈRE, K., FEVOTTE, C., FIALKOV, A., FULLEKRUG, M., GÉ RARD, E., GRIEßMEIER, J.-M., GUIDERDONI, B., GUILLEMOT, L., HESSELS, J., KOOPMANS, L., KONDRATIEV, V., LAMY, L., LANZ, T., LARZABAL, P., LEHNERT, M., LEVRIER, F., LOH, A., MACARIO, G., MAINTOUX, J. J., MARTIN, L., MARY, D., MASSON, S., MIVILLE-DESCHENES, M. A., OBEROI, D., PANCHENKO, M., PANDEY-POMMIER, M., PETITEAU, A., PINÇON, J. L., REVENU, B., RIBLE, F., RICHARD, C., RUCKER, H. O., SALOMÉ, P., SEMELIN, B., SERYLAK, M., SMIRNOV, O., STAPPERS, B., TAFFOUREAU, C., TASSE, C., THEUREAU, G., TOKARSKY, P., TORCHINSKY, S., ULYANOV, O., VAN DRIEL, W., VASYLIEVA, I., VAUBAILLON, J., VAZZA, F., VERGANI, S., WAS, M., WEBER, R. and ZAKHARENKO, V., 2015. NenuFAR: Instrument description and science case. In: International Conference on Antenna Theory and Techniques(ICATT): Proc. conf. Kharkiv, Ukraine, pp. 1–6. DOI: https://doi.org/10.1109/ICATT.2015.7136773

15. BURKE, B. F. and FRANKLIN, K. L., 1955. Observations of a variable radio source associated with the planet Jupiter. J. Geophys. Res. vol. 60, is. 2, pp. 213–217. DOI: https://doi.org/10.1029/JZ060i002p00213

16. RIIHIMAA, J. J., 1977. S-bursts in Jupiter's decametric radio spectra. Astrophys. Space Sci. vol. 51, is. 2, pp. 363–383. DOI: https://doi.org/10.1007/BF00644159

17. BAZELYAN, L. L., BRUCK, Yu. M., ZHOUCK, I. N., MEGN, A. V., SODIN, L. G. and SHARYKIN N. K., 1964. Broadband radio interferometer with an electrical control of the radiation pattern. Izv. Vyssh. Uchebn. Zaved. Radiofiz. vol. 7, no. 2, pp. 215–224 (in Russian).

18. BRUCK, Yu. M., GONCHAROV N. Yu., ZHOUCK I. N., INYUTIN G. A., MEGN A. V., SODIN, L. G. and SHARYKIN N. K., 1968. Experimental studies of multi-element antennas – grids of the radio telescope UTR-1. Izv. Vyssh. Uchebn. Zaved. Radiofiz. vol. 11, no. 1, pp. 28–43 (in Russian).

19. UDAYA SHANKAR, N. and RAVI SHANKAR, T. S., 1990. A digital correlation receiver for the GEETEE radio telescope. J. Astrophys. Astron. vol. 11, is. 3, pp. 297–310. DOI: https://doi.org/10.1007/BF02709280

20. KUTUZOV, S. M., ILYASOV, Yu. P. and GLUSHAEV, A. A., 1976. Antenna systems of the VLPA FIAN radio telescope. Radiophys. Quantum Electron. vol. 19, no. 11, pp. 1115–1120. DOI: https://doi.org/10.1007/BF01037293

21. ERICKSON, W. C., MAHONEY, M. J. and ERB, K., 1982. The Clark Lake Teepee-Tee telescope. Astrophys. J. Supp. Ser. vol. 50, pp. 403–419. DOI: https://doi.org/10.1086/190831

22. ABRANIN, E. P., BRUCK, Yu. M., ZAKHARENKO, V. V. and KONOVALENKO, A. A., 1997. Structure and Parameters of New System of Antenna Amplification of Radio Telescope UTR-2. Radio Physics and Radio Astronomy. vol. 2, no 1, pp. 95–102 (in Russian).

23. ABRANIN, E. P., BRUCK, Yu. M., ZAKHARENKO, V. V. and KONOVALENKO, A. A., 2001. The New Preamplification System for the UTR-2 Radio Telescope. Exp. Astron. vol. 11, is. 2, pp 85–112. DOI: https://doi.org/10.1023/A:1011109128284

24. VASILYEV, O. Y., KUZIN, A. I., KRAVTSOV, А. A., BULAKH, E. V., VINOGRADOV, V. V. and VAVRIV, D. M., 2014. Multifunctional Digital Receiver-Spectrometer. Radio Phys. Radio Astron. vol. 19, no. 3, pp. 276–289 (in Russian).

25. KONOVALENKO, A. A., 2005. Low-Frequency Radio Astronomy Prospects. . Radio Phys. Radio Astron. vol. 10, special issue, pp. S86–S114 (in Russian).

26. KONOVALENKO, A. A., TOKARSKY, P. L. and YERIN, S. N.,2013. Effective Area and Directional Patterns of Antenna Array Operating in Ultra Wideband Signals Receiving Mode. Radio Phys. Radio Astron. vol. 18, no. 3, pp. 257–264 (in Russian).

27. SODIN, L. G., 2005. Some Problems of the Phased Array Theory Relavant in Radio Astronomy. Radio Phys. Radio Astron. vol. 10, special issue, pp. S128–S142 (in Russian).

28. TOKARSKY, P. L., KONOVALENKO, A. A., FALKOVICH, I. S. and YERIN, S. N., 2015. SNR in Active receiving Antenna Used as an Element of Phased Antenna Array for GURT Radio Telescope. In: Proceedings of the 45th European Microwave Conference (EuMC 2015). Paris, France, 7–10 September 2015, pp. 1594–1597. DOI: https://doi.org/10.1109/EuRAD.2015.7346365

29. YERIN, S. N., TOKARSKY, P. L., GRIDIN, A. A., BUBNOV, I. N., KONOVALENKO, A. A., FALKOVYCH, I. S. and REZNIK, A. P., 2014. Beamforming Unit for Sub Array of Decameter and Meter Wave Radio Telescope GURT. Radio Phys. Radio Astron. vol. 19, no. 3, pp. 240–248 (in Russian).

30. YERIN, S. N., GRIDIN, A. A. and TOKARSKY, P. L., 2012. Phase shifter for antenna array of decameter range radio telescope, In: Proceedings of the 19-th International Conference on Microwaves, Radar and Wireless Communications, MIKON 2012. Warsaw, Poland, 21–23 May 2012, pp. 715–717. DOI: https://doi.org/10.1109/MIKON.2012.6233621

31. TOKARSKY, P. L., 2006. Matrix model of dissipative antenna array. Radiotechnika. Ukranian interdepartmental science technical digest. vol. 146, pp. 156–170 (in Russian).

32. TOKARSKY, P. L., 2007. Matrix Theory of Dissipative Antenna Arrays. In: Proceedings of the 6-th International Conference on Antenna Theory and Techniques (ICATT'07). Sevastopol, Ukraine, 17–21 September 2007, pp. 87–92. DOI: https://doi.org/10.1109/ICATT.2007.4425122

33. TOKARSKY, P. L. and YERIN, S. N., 2013. A Multiport Approach to Modeling of Phased Antenna Array for Radio Astronomy. In: Proceedings of the 43th European Microwave Conference (EuMC 2013). Nuremberg, Germany, 6–11 October 2013, pp. 1651–1654.

34. KONOVALENKO, O. O., TOKARSKY, P. L. and YERIN, S. N., 2015. Modelling of a subarray of a GURT radio telescope active antenna array. Prikladnaya radioelectronika. vol. 14, no. 1, pp. 46–52 (in Russian).

35. FALKOVICH, I. S., SODIN, L. G. and KALINICHENKO, N. N., 2000. Measurement of Subsrate Parameters for Specification of Characteristics of Antennas Located Near the Earth's Surface. Radio Phys. Radio Astron. vol. 5, no. 2, pp. 195–206 (in Russian).

36. KRAUS, J. D., 1966. Radio Astronomy. New York: McGraw-Hill.

37. KONOVALENKO, A. A., FALKOVICH, I. S., KALINICHENKO, N. N., GRIDIN, A. A., BUBNOV, I. N., LECACHEUX, A., ROSOLEN, C. and RUCKER, H. O., 2004. Active Antenna Array for Radio Astronomy. Radio Phys. Radio Astron. vol. 9, no 3. pp. 248–260 (in Russian).

38. SIDORCHUK, M. A., ULYANOV, O. M., SHEPELEV, V. A., MUKHA, D. V., BRAZHENKO, A. I., VASHCHISHIN, R. V. and FRANTZUSENKO, A. V., 2008. Largescale structure of the Northern sky at decametric waves. Scientific Workshop – Astrophysics with E-LOFAR. Hamburg, Germany, 16 – 19 September 2008. Available from: http://www.hs.uni-hamburg.de/DE/Ins/Lofar/lofar_ workshop/poster_abstracts.html#poster27

39. TURTLE, A. J., PUGH, G. F., KENDERDINE, S. and PAULINY-TOTH, I. I. K., 1962. The spectrum of the galactic radio emission. Mon. Not. R. Astron. Soc. vol. 124, is. 4, pp. 297–312. DOI: https://doi.org/10.1093/mnras/124.4.297

40. VASILENKO, N. M. and SIDORCHUK, M. A., 2015 Brightness Temperature and Spectral Index of Extragalactic Background at Decameter Wavelengths. Radio Phys. Radio Astron. vol. 20, no 3. pp. 205–215 (in Russian).

41. SHKLOVSKY, I. S., 1960. About probable secular change flux and intensive radio emission from several discrete sources. Astron. Zh. vol. 37, no 2. pp. 256–264 (in Russian).

42. HÖGBOM, J. A. and SHAKESHAFT, J. R., 1961 Secular variations of the flux density of the radio source Cassiopeia A. Nature. vol. 189, no. 4764, pp. 561–562. DOI: https://doi.org/10.1038/189561a0

43. IVANOV, V. P. and STANKEVICH, K. S., 1989. Periodic Variations of the Radio Emission and Evolution of the Spectrum of the Supernova Remnant Cassiopeia A. Astron. Zh. vol. 66, no. 1, pp. 30–39.

44. HELMBOLDT, J. F. and KASSIM, N. E., 2009. The evolution of Cas A at low radio frequencies. Astron. J. vol. 138, no. 3, pp. 838–844. DOI: https://doi.org/10.1088/0004-6256/138/3/838

45. ERICKSON, W. C. and PERLEY, R. A., 1975. An anomaly in the flux of Cassiopeia A at 38 MHz. Astron. J. vol. 200, pp. L83–L87. DOI: https://doi.org/10.1086/181903

46. TROITSKII, V. S., STANKEVICH, K. S., TSEITLIN, N. M., KROTIKOV, V. D., BONDAR’, L. N., STREZHNEVA, K. M., RAKHLIN, V. L., IVANOV, V. P., PELYUSHENKO, S. A., ZUBOV, M. M., SAMOILOV, R. A., TITOV, G. K., PORFIR’EV, V. A. and CHEKALEV, S. P., 1972. Calibration of the Flux Density of Cassiopeia A and Cygnus A in the Range 300-9375 MHz. Sov. Astron. vol. 15, no. 6, pp. 915–917.

47. VINYAIKIN, E. N., 2007. Evolution of the Radio Spectrum of Cassiopeia A from Long-Term Observations. Observations at 290 and 927 MHz. Astron. Rep. vol. 51, no. 2. pp. 87–96. DOI: https://doi.org/10.1134/S1063772907020023

48. BUBNOV, I. N., KONOVALENKO, A. A., STANISLAVSKY, A. A., BOVKOON ,V. P., ZHOUK, I. N. and MUKHA, D. V., 2014. Radio Spectrum Evolution of the Supernova Remnant Cassiopeia A at Frequencies 35–65 MHz. Radio Phys. Radio Astron. vol. 19, no. 2, pp. 111–119 (in Russian).

49. MELNIK, V. N., KONOVALENKO, A. A., ABRANIN, E. P., DOROVSKYY, V. V., STANISLAVSKY, A. A., RUCKER, H. O. and LECACHEUX, A., 2005. Solar sporadic radio emission in the decametre waveband. Astron. Astrophys. Trans. vol. 24, no. 5, pp. 391–401. DOI: https://doi.org/10.1080/10556790600568854

50. DOROVSKYY, V. V., MELNIK, V. N., KONOVALENKO, A. A., BUBNOV, I. N., GRIDIN, A. A., SHEVCHUK, N. V., FALKOVICH, I. S., KOVAL, A. А., RUTKEVYCH, B. P., REZNIK, А. P., RUCKER, H. О., PANCHENKO, М., BELOV, А. S., KHRYSTENKO, А. D., KVASOV, G. V. and YERIN, S. N., 2013. Observations of the Type U Burst in within 10–70 MHz with the GURT Radio Telescope. Radio Phys. Radio Astron. vol. 18, no. 2, pp. 101–106 (in Russian).

51. DOROVSKYY, V. V., MELNIK, V. N., KONOVALENKO, A. A., BUBNOV, I. N., GRIDIN, A. A., SHEVCHUK, N. V., RUCKER, H. O., POEDTS, S. and PANCHENKO, M., 2015 Decameter U-burst Harmonic Pair from a High Loop. Sol. Phys. vol. 290, no 1, pp. 181–192. DOI: https://doi.org/10.1007/s11207-014-0615-6

52. DOROVSKYY, V. V., MELNIK, V. N., KONOVALENKO, A. A., RUKER, H. O., ABRANIN, E. P. and LECACHEUX, A., 2010. Solar U- and J-Bursts at the Decameter Waves. Radio Phys. Radio Astron. vol. 15, no 1, pp. 5–14 (in Russian). DOI: https://doi.org/10.1063/1.3292550

53. MELNIK, V. N., KONOVALENKO, A. A., RUCKER, H. O., BOIKO, A. I., DOROVSKYY, V. V., ABRANIN, E. P. and LECACHEUX, A., 2011 Observations of Powerful Type III Bursts in the Frequency Range 10-30 MHz. Sol. Phys. vol. 269, no. 2, pp. 335–350. DOI: 10.1007/s11207- 010-9703-4

54. BRAZHENKO, A. I., PYLAEV, O. S., MELNIK V. N., KONOVALENKO A. A., FRANTSUZENKO, A. V., DOROVSKYY, V. V., VASHCHISHIN, R. V. and RUCKER, H. O., 2013. Observations of the Three Harmonic Components of Solar Type III Bursts at Decameter Wavelengths. Radio Phys. Radio Astron. vol. 18, no. 4, pp. 283–290 (in Russian).

55. BRAZHENKO, A. I., MELNIK, V. N., FRANTSUZENKO, A. V., DOROVSKYY, V. V., RUCKER, H. O. and PANCHENKO, M., 2015. On the Harmonic Coupling of Components in Pairs of IIIb-III Bursts at Decameter Wavelengths. Radio Phys. Radio Astron. vol. 20, no. 2, pp. 99–108 (in Russian).

56. DOROVSKYY, V. V., MEL'NIK, V. N., KONOVALENKO, A. A., RUCKER, H. O., ABRANIN, E. P., STANISLAVSKY, A. A. and LECACHEUX, A., 2007. Decameter Type II radio burst with three harmonics. In: Proceedings of European Planetary Science Congress 2007. Potsdam, Germany, 20–24 August, 2007, p. 688.

57. MEL'NIK, V. N., KONOVALENKO, A. A., RUCKER, H. O., STANISLAVSKY, A. A., ABRANIN, E. P., LECACHEUX, A., MANN, G., WARMUTH, A., ZAITSEV, V. V., BOUDJADA, M. Y., DOROVSKII, V. V., ZAHARENKO, V. V., LISACHENKO, V. N. and ROSOLEN, C., 2004. Observations of Solar Type II bursts at frequencies 10–30 MHz. Sol. Phys. vol. 222, no. 1, pp. 151–166. DOI: https://doi.org/10.1023/B:SOLA.0000036854.66380.a4

58. DOROVSKYY, V. V., MELNIK, V. N., KONOVALENKO, A. A., BRAZHENKO, A. I., PANCHENKO, M., POEDTS, S. and MYKHAYLOV, V. A., 2015. Fine and Superfine Structure of the Decameter-Hectometer Type II Burst on 7 June 2011. Sol. Phys. vol. 290, no 7, pp. 2031–2042. DOI: https://doi.org/10.1007/s11207-015-0725-9

59. MELNIK, V. N., SHEVCHUK, N. V., KONOVALENKO, A. A., RUCKER, H. O., DOROVSKYY, V. V., POEDTS, S. and LECACHEUX, A., 2014. Solar Decameter Spikes. Sol. Phys. vol. 289, no. 5, pp. 1701–1714. DOI: https://doi.org/10.1007/s11207-013-0434-1

60. MELNIK, V. N., RUCKER, H. O. and KONOVALENKO, A. A., 2008. Solar Type IV Bursts at Frequencies 10–30 MHz. In: PINGZHI WANG, ed. Solar Physics Research Trends. New York: Nova Science Pub., pp. 287–325.

61. ZAQARASHVILI, T. V., MELNIK, V. N., BRAZHENKO, A. I., PANCHENKO, M., KONOVALENKO, A. A., FRANZUZENKO, A. V., DOROVSKYY, V. V. and RUCKER, H. O., 2013. Radio seismology of the outer solar corona. Astron. Astrophys. vol. 555, id. A55. DOI: 10.1051/ 0004-6361/201321548

62. ZLOTNIK, E. Y., ZAITSEV, V. V., MELNIK, V. N., KONOVALENKO, A. A. and DOROVSKYY, V. V., 2015. "Fingerprint" Fine Structure in the Solar Decametric Radio Spectrum. Sol. Phys. vol. 290, no. 7, pp. 2013–2030. DOI: https://doi.org/10.1007/s11207-015-0724-x

63. WILD, J. P. and ROBERTS, J. A., 1956. Regions of the ionosphere responsible for radio star scintillations. Nature. vol. 178, no. 4529, pp. 377–378. DOI: https://doi.org/10.1038/178377a0

64. HEWISH, A., SCOTT, P. F. and WILLS, D., 1964. Interplanetary Scintillation of Small Diameter Radio Sources. Nature. vol. 203, no. 4951, pp. 1214–1217. DOI: 10.1038/ 2031214a0

65. HEWISH, A., DENNISON, P. A. and PILKINGTON, J. D. H., 1966. Measurements of the size and motion of the irregularities in the interplanetary medium. Nature. vol. 209, no. 5029. pp. 1188–1189. DOI:10.1038/ 2091188a0

66. FALKOVICH, I. S., KALINICHENKO, N. N., GRIDIN, A. A. and BUBNOV, I. N., 2004. On the Possibility of Broadband IPS Observations at Decameter Waves. Radio Phys. Radio Astron. vol. 9, no. 2, pp. 121–129 (in Russian).

67. KALINICHENKO, N. N., 2009. A search for compact decametric radio sources in supernova remnants using the interplanetary scintillation technique. Astrophys. Space Sci. vol. 319, no. 2. pp. 131–138. DOI: 10.1007/s10509- 008-9960-y

68. FALKOVICH, I. S., KONOVALENKO, A. A., KALINICHENKO, N. N., OLYAK, M. R., GRIDIN, A. A., BUBNOV, I. N., LECACHEUX, A. and RUCKER, H. O., 2006. Variations of Parameters of Solar Wind Sream Structure Outside 1 AU in 2003–2004. Radio Phys. Radio Astron. vol. 11, no. 1, pp. 31–41 (in Russian).

69. DESSLER, A. J., 1983. Jupiter's magnetic field and magnetosphere. In: A. J. Dessler, ed. Physics of the Jovian magnetosphere. Cambridge: Cambridge University Press, pp. 1–50. DOI: https://doi.org/10.1017/CBO9780511564574

70. SMITH, E. J., DAVIS, L. JR., JONES, D. E., COLEMAN, P. J., COLBURN, D. S., DYAL, P., SONNET, C. P. and FRANDSEN, A. M. A., 1974. The planetary magnetic field and magnetosphere of Jupiter: Pioneer 10. J. Geophys. Res. Space Phys. vol. 79, pp. 3501–3513. DOI: https://doi.org/10.1029/JA079i025p03501

71. ACUFIA, M. H. and NESS, N. F., 1976. The main magnetic field of Jupiter. J. Geophys. Res. Space Phys. vol. 81, pp. 2917–2922. DOI: https://doi.org/10.1029/JA081i016p02917

72. NESS, N. F., ACUFIA, M. H, LEPPING, R. P., BURLAGA, L. F., BEHANNON, K. W. and NEUBAUER, F. M., 1979. Magnetic field studies at Jupiter by Voyager 1: Preliminary results. Science. vol. 204, no. 4396, pp. 982–987. DOI: https://doi.org/10.1126/science.204.4396.982

73. NESS, N. F., ACUFIA, M. H, LEPPING, R. P., BURLAGA, L. F., BEHANNON, K. W. and NEUBAUER, F. M., 1979. Magnetic field studies at Jupiter by Voyager 2: Preliminary results. Science. vol. 206, no. 4421, pp. 966–972. DOI: https://doi.org/10.1126/science.206.4421.966

74. ZARKA, P., 1998. Auroral radio emissions at the outer planets: Observations and theories. J. Geophys. Res. Atmos. vol. 103, no. 3339, pp. 20159–20194. DOI: 10.1029/ 98JE01323

75. LITVINENKO, G. V., SHAPOSHNIKOV, V. E., KONOVALENKO, A. A., ZAKHARENKO, V. V., PANCHENKO, M., DOROVSKY, V. V., BRAZHENKO, A. I., RUCKER, H. O., VINOGRADOV, V. V. and MELNIK, V. N., 2016. Quasi-similar decameter emission features appearing in the solar and jovian dynamic spectra. Icarus. vol. 272, pp 80–87. DOI: https://doi.org/10.1016/j.icarus.2016.02.039

76. RYABOV, V. B., ZARKA, P., HESS, S., KONOVALENKO, A., LITVINENKO, G., ZAKHARENKO, V., SHEVCHENKO, V. A. and CECCONI, B., 2014. Fast and slow frequency-drifting millisecond bursts in Jovian decametric radio emissions. Astron. Astrophys. vol. 568, id. A53. DOI: https://doi.org/10.1051/0004-6361/201423927

77. BOISCHOT, A., ROSOLEN, C., AUBIER, M. G., DAIGNE, G., GENOVA, F., LEBLANC, Y., LECACHEUX, A., DE LA NOË, J. and MØLLER-PEDERSEN, B., 1980. A new high-grain, broadband, steerable ar ray to study Jovian decametric emission. Icarus. vol. 43, no. 3, pp. 399–407. DOI: https://doi.org/10.1016/0019-1035(80)90185-2

78. LECACHEUX, A., 2000. The Nançay Decameter Array: A Useful Step Towards Giant, New Generation Radio Telescopes for Long Wavelength Radio Astronomy, in Radio Astronomy at Long Wavelengths. In: R. G.STONE, K. W. WEILER, M. L. GOLDSTEIN and J.-L. BOUGERET, eds. Radio Astronomy at Long Wavelengths. Washington, DC, USA: American Geophysical Union, pp. 321–328. DOI: https://doi.org/10.1029/GM119p0321

79. KONOVALENKO, A., LECACHEUX, A., RUCKER, H., FISCHER, G., ABRANIN, E. P., KALINICHENKO, N. N., FALKOVICH, I. S. and SIDORCHUK, K. M., 2006. Ground-based decameter wavelength observations of Saturn electrostatic discharges. In: European Planetary Science Congress, EPSC2006-A-00229. Berlin, Germany, 18–22 September 2006, p. 229.

80. KONOVALENKO, A. A., KALINICHENKO, N. N., RUCKER, H. O., LECACHEUX, A., FISCHER, G., ZARKA, P., ZAKHARENKO, V. V., MYLOSTNA, K. Y., GRIEßMEIER J.-M., ABRANIN, E. P., FALKOVICH, I. S., SIDORCHUK, K. M., KURTH, W. S., KAISER, M. L. and GURNETT, D. A., 2013. Earliest recorded groundbased decameter wavelength observations of Saturn's lightning during the giant E-storm detected by Cassini spacecraft in early 2006. Icarus. vol. 224, no. 1, pp. 14–23. DOI: https://doi.org/10.1016/j.icarus.2012.07.024

81. ZAKHARENKO, V. V., MYLOSTNA, K. Y., FISCHER, G., KONOVALENKO, A. A., ZARKA, P., GRIEßMEIER, J.-M., RYABOV, B. P., VAVRIV, D. M., RYABOV, V. B., RUCKER, H., RAVIER, P., SIDORCHUK, M. A., CECCONI, B., COFFRE, A., DENIS, L., FABRICE, C., KOZHYN, R. V., MUKHA, D. V., PALLIER, L., SCHNEIDER, J., SHEVCHENKO, V. A., VINOGRADOV, V. V., WEBER, R. and NIKOLAENKO, V. S., 2011. Identification of Saturn Lightings Recorded by the UTR-2 Radio Telescope and Cassini Spacecraft. Radio Phys. Radio Astron. vol. 2, no. 2, pp. 93–98. DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i2.10

82. ZAKHARENKO, V., MYLOSTNA, K., KONOVALENKO, A., KOLYADIN, V., ZARKA, P., GRIEßMEIER, J.-M., LITVINENKO, G., SIDORCHUK, M., RUCKER, H., FISCHER, G., CECCONI, B., COFFRE, A., DENIS, L., SHEVCHENKO, V. and NIKOLAENKO, V., 2012. Search and study of electrostatic discharges in the Solar System with the radio telescope UTR-2. In: European Planetary Science Congress. Madrid, Spain, 23-28 September 2012, id. EPSC2012-186. Available from: http://meetings.copernicus.org/epsc2012

83. FISCHER, G., KURTH, W. S., GURNETT, D. A., ZARKA, P., DYUDINA, U. A., INGERSOLL, A. P., EWALD, S. P., PORCO, C. C., WESLEY, A., GO, C. and DELCROIX, M., 2011. A giant thunderstorm on Saturn. Nature. vol. 475, no. 7354, pp. 75–77. DOI: 10.1038/nature10205

84. MYLOSTNA, K. Y., ZAKHARENKO, V. V., KONOVALENKO, A. A., FISHER, G., ZARKA, P. and SIDORCHUK, M. A., 2014. Fine Time Structure of Lightnings on Saturn. Radio Phys. Radio Astron. vol. 19, no. 1, pp. 10–19 (in Russian).

85. MYLOSTNA, K. Y. and ZAKHARENKO, V. V., 2013. Search and Study of Storm Activity on Saturn and Other Planets of the Solar System. Radio Phys. Radio Astron. vol. 18, no. 1, pp. 12–25 (in Russian).

86. BRUK, Y. M., DAVIES, J. G., KUZ’MIN, A. D., LYNE, A. G., MALOFEEV, V. M., ROWSON, B., USTIMENKO, B. Y. and SHITOV, Y. P., 1978. Radio-emission spectra of five pulsars in the 17-1420 MHz range. Sov. Astron. vol. 22, pp. 588–593.

87. MALOV, I. F., MALOFEEV, V. F. and SEN’E, D. S., 1994. Observed total radio luminosities of 232 pulsars. Astron. Rep. vol. 38, pp. 677–682.

88. MALOFEEV, V. M., GIL, J., JESSNER, A., MALOV, I. F., SEIRADAKIS, J. H., SIEBER, W. and WIELEBINSKI, R.,1994. Spectra of 45 pulsars. Astron. Astrophys. vol. 285, pp. 201–208.

89. KONOVALENKO, A., SODIN, L., ZAKHARENKO, V., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., TOKARSKY, P., MELNIK, V., KALINICHENKO, N., STANISLAVSKY, A., KOLIADIN, V., SHEPELEV, V., DOROVSKYY, V., RYABOV, V., KOVAL, A., BUBNOV, I., YERIN, S., GRIDIN, A., KULISHENKO, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., REZNIK, A., KVASOV, G., MUKHA, D., LITVINENKO, G., KHRISTENKO, A., SHEVCHENKO, V. V., SHEVCHENKO, V. A., BELOV, A., RUDAVIN, E., VASYLIEVA, I., MIROSHNICHENKO, A., VASILENKO, N., OLYAK, M., MYLOSTNA, K., SKORYK, A., SHEVTSOVA, A., PLAKHOV, M., KRAVTSOV, I., VOLVACH, Y., LYTVINENKO, O., SHEVCHUK, N., ZHOUK, I., BOVKUN, V., ANTONOV, A., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHIN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A., GRIEß- MEIER, J.-M., TAGGER, M., GIRARD, J., CHARRIER, D., BRIAND, C. and MANN, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron. [online]. Online First Articles, pp. 1–38. DOI: 10.1007/s10686-016-9498-x. Available from: http://link.springer.com/journal/10686
https://doi.org/10.1007/s10686-016-9498-x

90. KUZ'MIN, A. D., 1989. Pulsars. Moscow: Nauka Publ. (in Russian).

91. MALOFEEV, V. M., MALOV, O. I. and SHCHEGOLEVA, N. B., 1998. Discovery of a burst in one pulse component in the pulsar PSR B0643+80. Astron. Rep. vol. 42, no. 2, pp. 241–245.

92. POPOV, M. V., KUZ’MIN, A. D., UL’YANOV, O. M., DESHPANDE, A. A., ERSHOV, A. A., ZAKHARENKO, V. V., KONDRAT’EV, V. I., KOSTYUK, S. V., LOSOVSKI, B. Y. and SOGLASNOV, V. A., 2006. Instantaneous Radio Spectra of Giant Pulses from the Crab Pulsar from Decimeter to Decameter Wavelengths. Astron. Rep. vol. 50, no. 7, pp. 562–568. DOI: https://doi.org/10.1134/S1063772906070067

93. ULYANOV, O. M., ZAHARENKO, V. V., KONOVALENKO, A. A., LECACHEUX, A., ROSOLEN, C. and RUCKER, H. O.,2006. Detection of Individual Pulses from Pulsars B0809+74, B0834+06, B0943+10, B0950+08 and B1133+16 in the Decameter Wavelengths. Radio Phys. Radio Astron. vol. 11, no. 2, pp. 113–133 (in Russian).

94. ULYANOV, O. M., DESHPANDE, A., ZAKHARENKO, V. V., ASGEKAR, A. and SHANKAR, U., 2007. Two- Frequency Observations of Six Pulsars Using UTR-2 and GEETEE Radio Telescopes. Radio Phys. Radio Astron. vol. 12. no. 1, pp. 5–19 (in Russian).

95. KUZMIN, A. D., 2007. Giant pulses of pulsar radio emission. Astrophys. Space Sci. vol. 308, no. 1, pp. 563–567. DOI: https://doi.org/10.1007/s10509-007-9347-5

96. UL'YANOV, O. M., ZAKHARENKO, V. V. and BRUCK, Y. M., 2008. The parameters of pulsar subpulse emission at decameter wavelengths. Astron. Rep. vol. 52, no. 11, pp. 917–924. DOI: https://doi.org/10.1134/S1063772908110061

97. UL'YANOV, O. M. and ZAKHARENKO, V. V., 2012. Energy of anomalously intense pulsar pulses at decameter wavelengths. Astron. Rep. vol. 56, no. 6, pp. 417–429. DOI: https://doi.org/10.1134/S1063772912060054

98. ULYANOV, O. M., SHEVTSOVA, A. I., MUKHA, D. V. and SEREDKINA, A. A., 2013. Investigation of the Earth ionosphere using the radio emission of pulsars. Baltic Astronomy. vol. 22, pp. 53–65. DOI: https://doi.org/10.1515/astro-2017-0147

99. ZAKHARENKO, V. V., VASYLIEVA, I. Y., KONOVALENKO, A. A., ULYANOV, O. M., SERYLAK, M., ZARKA, P., GRIEßMEIER, J.-M., COGNARD, I. and NIKOLAENKO, V. S., 2013. Detection of decametre-wavelength pulsed radio emission of 40 known pulsars. Mon. Not. R. Astron. Soc. vol. 431, no. 4, pp. 3624–3641. DOI: https://doi.org/10.1093/mnras/stt470

100. ULYANOV, O. M., SKORYK, A. O., SHEVTSOVA, A. I., PLAKHOV, M. S. and ULYANOVA, O. O., 2016. Detection of the fine structure of the pulsar J0953+0755 radio emission in the decametre wave range. Mon. Not. R. Astron. Soc. vol. 455, no. 1, pp. 150–157. DOI: 10.1093/ mnras/stv2172

101. AFRAIMOVICH, E. L., 1981. Cepstral analysis of broadband radio emission – New possibilities in radio astronomy. Astron. Astrophys. vol. 97, no. 1, pp. 366–372.

102. AFRAIMOVICH, E. L., SMOL'KOV, G. Y. and YASYUKEVICH, Y. Y., 2008. Adaptive radio astronomy. Doklady Physics. vol. 53, no. 4, pp. 211–215. DOI: 10.1134/ S1028335808040095

103. NOUTSOS, A., JOHNSTON, S., KRAMER, M. and KARASTERGIOU, A., 2008. New pulsar rotation measures and the Galactic magnetic field. Mon. Not. R. Astron. Soc. vol. 386, no. 4, pp. 1881–1896. DOI: 10.1111/j.1365- 2966.2008.13188.x

104. ULYANOV, O. M., SHEVTSOVA, A. I. and SKORYK, A. O., 2013. Polarization Sounding of the Pulsar Magnetosphere. Bulletin CrAO. vol. 109, pp. 159–168.

105. KONOVALENKO, A. A. and SODIN, L. G., 1980. Neutral 14N in the interstellar medium. Nature. vol. 283, pp. 360–361. DOI: https://doi.org/10.1038/283360a0

106. KONOVALENKO, A. A. and SODIN, L. G., 1981. The 26.13 MHz absorption line in the direction of Cassiopeia A. Nature. vol. 294, pp. 135–136. DOI: https://doi.org/10.1038/294135a0

107. STEPKIN, S. V., KONOVALENKO, A. A., KANTHARIA, N. G. and UDAYA SHANKAR, N., 2007. Radio recombination lines from the largest bound atoms in space. Mon. Not. R. Astron. Soc. vol. 374, no. 3, pp. 852–856. DOI: https://doi.org/10.1111/j.1365-2966.2006.11190.x

108. WALMSLEY, C. M. and WATSON, W. D., 1982. The influence of dielectronic-like recombination at low temperatures on the interpretation of interstellar, radio recombination lines of carbon. Astrophys. J. vol. 260, pp. 317–325. DOI: https://doi.org/10.1086/160256

109. GORDON, M. A. and SOROCHENKO, R. L., 2002. Radio Recombination Lines: Their Physics and Astronomical Application. Dordrecht: Kluwer Acad. Publ. DOI: https://doi.org/10.1007/978-94-010-0261-5

110. BRAUDE, S. Y., 1992. Chapter 7. Decametric radio astronomy. In: N. S. Kardashev, ed. Astrophysics out the Threshold of 21st Century. Philadelphia: Gordon and Breach Science Publ., pp. 81–102.

111. KONOVALENKO, A. A., 1981. Digital 1-Bit Correlometer. Pribory i Tekhnika Eksperimenta. no. 6, pp. 128–137 (in Russian).

112. KOZHYN, R. V., VYNOGRADOV, V. V. and VAVRIV, D. M., 2007. Low-Noise, High Dynamic Range Digital Receiver/Spectrometer for Radio Astronomy Applications. In: Int. Kharkov Symposium Physics and Engineering of Millimeter and Sub-Millimeter Waves (MSMW). Kharkiv, Ukraine, 25-30 June 2007, pp. 736–738. DOI: https://doi.org/10.1109/MSMW.2007.4294797

113. KONOVALENKO, A. A. and STEPKIN, S. V., 2005. Radio Recombination Lines. In: L. I. GURVITS, S. FREY and S. RAWLINGS, eds. Radio Astronomy from Karl Jansky to Microjansky. Budapest: EAS Publicaions Series. vol. 15, pp. 271–295. DOI: https://doi.org/10.1051/eas:2005158

114. FURLANETTO, S. R., OH, S. P. and BRIGGS, F. H., 2006. Cosmology at low frequencies: The 21-cm transition and the high-redshift Universe. Phys. Rep. vol. 433, no. 4-6, pp. 181–301. DOI: https://doi.org/10.1016/j.physrep.2006.08.002


Keywords


astrophysics; decameter and meter radio waves; smallsized radio telescope

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)