SPECTRUM OF THE INTERPLANETARY PLASMA TURBULENCE AT A DISTANCE FROM THE SUN GREATER THAN 1 AU

DOI: https://doi.org/10.15407/rpra21.04.260

M. R. Olyak, N. N. Kalinichenko, A. A. Konovalenko, A. I. Brazhenko, I. N. Bubnov

Abstract


 

PACS numbers: 95.30.Jx, 95.75.Pq, 95.85.Bh 

Purpose: Making analysis of variations of fast and slow solar
wind parameters at distances from the Sun of about 1 AU and
more.

Design/methodology/approach: The method of Feynman pathintegrals is applied to calculate the temporal spectra and dispersion dependences of the drift velocity of interplanetary scintillations. The calculated spectra and dispersion dependences have been compared with the experimental ones to determine the solar wind parameters.

Findings:The parameters of fast and slow solar wind are determined and obtained data analyzed by the results of observations with the UTR-2 and URAN-2 radio telescopes made in 2003–2011. Based on these results, the empirical radial dependences of the turbulence spectra for fast and slow solar wind have been built.

Conclusions: The slow solar wind turbulence is shown on the average corresponding to the Kolmogorov law of hydrodynamic turbulence. The turbulence of fast quasi-stationary solar wind is well described by the Iroshnikov–Kraichnan magnetohydrodynamic turbulence.

Key words: interplanetary scintillation, fast and slow solar wind, three-dimensional spatial spectrum of electron density fluctuations

Manuscript submitted 08.08.2016

Radio phys. radio astron. 2016, 21(4): 260-269 

REFERENCES

1. BRUNO, R. and CARBONE, V., 2005. The solar wind as a turbulence laboratory. Living Rev. Sol. Phys. vol. 2, id. 4. DOI: https://doi.org/10.12942/lrsp-2005-4

2. HAYASHI, K., KOJIMA, M., TOKUMARU, M. and FUJIKI, K., 2003. MHD tomography using interplanetary scintillation measurement. J. Geophys. Res. Space Phys. vol. 108, is. A3, pp. 1102–1123. DOI: https://doi.org/10.1029/2002JA009567

3. JACKSON, B. V., HICK, P. L., KOJIMA, M. and YOKOBE, A., 1998. Heliospheric tomography using interplanetary scintillation observations. 1. Combined Nagoya and Cambridge data. J. Geophys. Res. Space Phys. vol. 103, is. A6, pp. 12049–12068. DOI: https://doi.org/10.1029/97JA02528

4. SPANGLER, S. R., KAVARS, D. W., KORTENKAMP, P. S., BONDI, M., MANTOVANI, F. and ALEF, W., 2002. Very long baseline interferometer measurements of turbulence in the inner solar wind. Astron. Astrophys. vol. 384, no. 2, pp. 654–665. DOI: https://doi.org/10.1051/0004-6361:20020028

5. FALLOWS, R. A., BREEN, A. R. and DORRIAN, G. D., 2008. Developments in the use of EISCAT for interplanetary scintillation. Ann. Geophys. vol. 26, pp. 2229–2236. DOI: https://doi.org/10.5194/angeo-26-2229-2008

6. OLYAK, M. R., 2012. Large-scale structure of solar wind and geomagnetic phenomena. J. Atmos. Sol.-Terr. Phys. vol. 86, pp. 34–40. DOI: https://doi.org/10.1016/j.jastp.2012.06.011

7. FREHLICH, R. G., 1987. Space-time fourth moment of waves propagating in random media. Radio Sci. vol. 22, is. 4, pp. 481–490. DOI: https://doi.org/10.1029/RS022i004p00481

8. MATTHAEUS, W. H. and GOLDSTEIN, M. L., 1982. Stationarity of magnetohydrodynamic fluctuations in the solar wind. J. Geophys. Res. Space Phys. vol. 87, is. A12, pp. 10347–10354. DOI: 0.1029/JA087iA12p10347

9. BURLAGA, L. F and KLEIN, L. W., 1986. Fractal structure of the interplanetary magnetic field. J. Geophys. Res. Space Phys. vol. 91, is. A1, pp. 347–350. DOI: https://doi.org/10.1029/JA091iA01p00347

10. GRECO, A., MATTHAEUS, W. H., SERVIDIO, S., CHUYCHAI, P. and DMITRUK, P., 2009. Statistical analysis of discontinuities in solar wind ACE data and comparison with intermittent MHD turbulence. Astrophys. J. Lett. vol. 691, no. 2, pp. L111–L114. DOI: https://doi.org/10.1088/0004-637X/691/2/L111

11. HUDDLESTON, D. E., WOO, R. and NEUGEBAUER, M., 1995. Density fluctuations in different types of solar wind flow at 1 AU and comparison with results from Doppler scintillation measurements near the Sun. J. Geophys. Res. Space Phys. vol. 100, is. A10. pp.19951–19956. DOI: https://doi.org/10.1029/95JA01084

12. ALEXANDROVA, O., LACOMBE, C., MANGENEY, A., GRAPPIN, R. and MAKSIMOVIC, M., 2012. Solar wind turbulent spectrum at plasma kinetic scales. Astrophys. J. vol. 760, no. 2, pp. 121–127. DOI:
https://doi.org/10.1088/0004-637X/760/2/121

13. CHEN, C. H. K., SALEM, C. S., BONNELLl, J. W., MOZER, F. S. and BALE, S. D., 2012. Density fluctuation spectrum of solar wind turbulence between ion and electron scales. Phys. Rev. Lett. vol. 109, no. 3, 35001. DOI: https://doi.org/10.1103/PhysRevLett.109.035001

14. HEWISH, A., SCOTT, P. F. and WILLS, D., 1964. Interplanetary scintillation of small diameter radio sources. Nature. vol. 203, is. 4951, pp. 1214–1217. DOI: https://doi.org/10.1038/2031214a0

15. ZHUK, N., 1980. Scintillation studies of cosmic source angular structure (review). Radiophys. Quantum Electron. vol. 23, no. 8, pp. 597–615. DOI: https://doi.org/10.1007/BF01041203

16. MANOHARAN, P. K., 1993. Three-dimensional structure of the solar wind: Variation of density with the solar cycle. Sol. Phys. vol. 148, is. 1, pp. 153–167. DOI: https://doi.org/10.1007/BF00675541

17. GLUBOKOVA, S. K., CHASHEI, I. V. and TYUL'BASHEV, S. A., 2012. Small-scale solar wind density turbulence spectrum from interplanetary scintillation observations. Adv. Astron. Space Phys. vol. 2, is. 2, pp. 164–166.

18. HOUMINER, Z. and HEWISH, A., 1972. Long lived sectors of enhanced density other hand, both the 34- and the 74-MHz IPS spectra were irregularities in the solar wind. Planet. Space Sci. vol. 20, is. 10, pp. 1703–1716. DOI: https://doi.org/10.1016/0032-0633(72)90192-4

19. PYNZAR, A. V., SHISHOV, V. I. and SHISHOVA T. D., 1975. Power spectra of interplanetary scintillations. Astronomicheskii Zhurnal. vol. 52, no. 6, pp. 1187–1194 (in Russian).

20. GOTWOLS, B. L., MITCHELL, D. G., ROELOF, E. C., CRONYN, W. M., SHAWHAN, S. D. and ERICKSON, W. C., 1978. Synoptic analysis of interplanetary radio scintillation spectra observed at 34 MHz // J. Geophys. Res. Space Phys. vol. 83, is. A9. – P. 4200–4212. DOI: https://doi.org/10.1029/JA083iA09p04200

21. SPANGLER, S. R. and SAKURAI, T., 1995. Radio interferometer observations of solar wind turbulence from the orbit of HELIOS to the solar corona. Astrophys. J. vol. 445, no. 2, pp. 999–1016. DOI: https://doi.org/10.1086/175758

22. FUJIKI, K., KOJIMA, M., TOKUMARU, M., OHMI, T., YOKOBE, A., HAYASHI, K., McCOMAS, D. J. and ELLIOTT, H. A., 2003. How did the solar wind structure change around the solar maximum? From interplanetary scintillation observation. Ann. Geophys. vol. 21, no. 6, pp. 1257–1261. DOI: https://doi.org/10.5194/angeo-21-1257-2003

23. FALKOVICH, I. S., KONOVALENKO, A. A.,  KALINICHENKO, N. N., OLYAK, M. R., GRIDIN, A. A. BUBNOV, I. N, LECACHEUX, A. and RUCKER, H. O., 2006. Variations of Parameters of Solar Wind Stream Structure outside 1 AU in 2003-2004. Radio Phys. Radio Astron. vol. 11, no. 1, pp. 31–41 (in Russian).

24. FALKOVICH, I. S., OLYAK, M. R., KALINICHENKO, N. N. and BUBNOV, I. N., 2011. Association between Variations of the Solar Wind Parameters and Geomagnetic Activity Index Аp in 2003–2005. Radio Physics and Radio Astronomy. vol. 2, no. 3, pp. 205–210. DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i3.20

25. FALKOVICH, I. S., KALINICHENKO, N. N., KONOVALENKO, A. A., YATSKIV, Y. S., LYTVYNENKO, L. M., MELNIK, V. N., OLYAK, M. R., DOROVSKYY, V. V., BRAZHENKO, A. I., LYTVYNENKO, O. A., BUBNOV, I. N., GRIDIN, A. A. and SOLOV'EV, V. V., 2011. The URAN Decameter Radiotelescope System as an Instrument for Space Weather Investigations. Radio Physics and Radio Astronomy vol. 2, no. 4, pp. 307–314. DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i4.30

26. OLYAK, M. R., KALINICHENKO, N. N., KONOVALENKO, A. A. and BRAZHENKO, A. I., 2014. Applicationof Spectral and Dispersion Techniques at the Decameter Wavelengths for Determination of Solar Wind Parameters. Radio Phys. Radio Astron. vol. 19, no. 2, pp. 120–125 (in Russian).

27. OLYAK, M. R., 2013.The dispersion analysis of driftvelocity in the study of solar wind flows. J. Atmos. Sol.-Terr. Phys. vol. 102, pp. 185–191. DOI: https://doi.org/10.1016/j.jastp.2013.05.016

28. OLYAK, M. R., 2015. High-Speed Solar Wind andGeomagnetic Activity. Radio Phys. Radio Astron. vol. 20, no. 1, pp. 3–9 (in Russian).

29. BOROVIKOV, V., 2003. STATISTICA: The Art of Computer Data Analysis for Professionals. St. Petersburg, Russia: Piter Publ. (in Russian).

30. ROBERTS, D. A., 2010. Evolution of the spectrum of solar wind velocity fluctuations from 0.3 to 5 AU. J. Geophys. Res. Space Phys. vol. 115, is. A12,·id. A12101. DOI: https://doi.org/10.1029/2009JA015120


Keywords


interplanetary scintillation; fast and slow solar wind; three-dimensional spatial spectrum of electron density fluctuations

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)