SOLAR WIND INVESTIGATIONS BY OBSERVATIONS OF INTERPLANETARY SCINTILLATIONS OF COSMIC RADIO SOURCES AT DECAMETER WAVELENGTHS

DOI: https://doi.org/10.15407/rpra22.01.045

N. N. Kalinichenko, M. R. Olyak, O. O. Konovalenko, I. N. Bubnov, S. N. Yerin, A. I. Brazhenko, O. L. Ivantishin, O. A. Lytvynenko

Abstract


PACS number: 96.50.Ci 

Purpose: Description of the solar wind investigation technique based on interplanetary scintillation observations of the decameter radio emission of space radio sources.

Design/methodology/approach: The method is based on using the Feynman pass integral technique for calculation of statistic characteristics of interplanetary scintillations.

Findings: The technique of determination of a stream structure of the solar wind beyond the Earth’s orbit is created. The technique is based on the analysis of temporary, frequency and space characteristics of the interplanetary scintillations of decameter radio emission of space radio sources. Identification of this kind stream structure opens unique opportunities for the interplanetary plasma physics study. In particular, the difference in parameters of interplanetary plasma streams can be
used for investigation of high-speed streams of solar wind from coronal holes, identification and studying of dynamics of driving of coronal mass ejections in the interplanetary space. The latter will allow, for example, to develop a reliable technique for estimation of arrival time of coronal mass emissions to the Earth, being of undoubted interest from the space weather forecast viewpoint.

Conclusions: It is shown that the modern progress in digital technique and data analysis methodologies allows to use the observations of the interplanetary scintillations of cosmic radio source radio emission for determination of the solar wind parameters, reconstruction of the solar wind stream structure, detection and investigation of dynamics of coronal mass ejections beyond the Earth’s orbit.

Key words: solar wind, interplanetary scintillations, decameter range

Manuscript submitted 07.12.2016

Radio phys. radio astron. 2017, 22(1): 45-52 

 

REFERENCES

1. SHKLOVSKY, I. S., 1951. Solar corona. Moscow-Leningrad, Russia: GITTL Publ. (in Russian).

2. SHKLOVSKY, I. S., 1962. Physic of solar corona. Moscow, Russia: Fizmatgiz Publ. (in Russian).

3. HEWISH, A., SCOTT, P. F. and WILLS, D., 1964. Interplanetary scintillation of small diameter radio sources. Nature. vol. 203, no. 4951, pp. 1214–1217. DOI: https://doi.org/10.1038/2031214a0

4. HEWISH, A., DENNISON, P. A. and PILKINGTON, J. D. H., 1966. Measurements of the size and motion of the irregularities in the interplanetary medium. Nature. vol. 209, no. 5029, pp. 1188–1189. DOI:https://doi.org/10.1038/2091188a0

5. FALKOVICH, I. S., KALINICHENKO, N. N., GRIDIN, A. A. and BUBNOV, I. N., 2004. On the Possibility of Broadband IPS Observations at Decameter Waves. Radio Phys. Radio Astron. vol. 9, no. 2, pp. 121–129 (in Russian).

6. OLYAK, M. R., 2002. On the application of statistical radiophysics methods for the analysis of decameter interplanetary scintillations. Visn. Khark. Nats. Univ. Radiofizyka ta Elektronika. no. 570, ser. 2, pp. 210–211 (in Russian).

7. OLYAK, M. R., 2005. On the peculiarities of the analysis-of-variance method application in the decameter wavelength study of solar wind. Radio Phys. Radio Astron. vol. 10, no. 4, pp. 385–391 (in Russian).

8. ALEKSEEV, G. A., GEL'FREIKH, G. B., ZAITSEV, V. V., ILIASOV, I. P., KAIDANOVSKII, N. L., MATVEENKO, L. I., MEGN, A. V., MOLCHANOV, A. P., STEPANOV, A. P. and SHISHOV, V. I., 1990. Soviet radio telescopes and solar radio astronomy. Moscow, Russia: Nauka Publ. (in Russian).

9. CRONYN, W. M., 1970. The analysis of radio scattering and space-probe observations of small-scale structure in the interplanetary medium. Astrophys. J. vol. 61, pp. 755–763. DOI: https://doi.org/10.1086/150576

10. BRAUDE, S. Y., MEGN, A. V. and SODIN, L. G., 1978. Decameter wave band radio telescope UTR-2. In: Anteny. Moscow, USSR: Svyaz' Publ. no 26, pp. 3–15 (in Russian).

11. MEGN, A. V., SHARYKIN, N. K., ZAKHARENKO, V. V., BULATSEN, V. G., BRAZHENKO, A. I. and VASCHISHIN, R. V., 2003. Decameter Wavelength Radio Telescope URAN-2. Radio Phys. Radio Astron. vol. 8, no 4, pp. 345–356 (in Russian).

12. RYABOV, V. B., VAVRIV, D. M., ZARKA, P., RYABOV, B. P., KOZHIN, R. V., VINOGRADOV, V. V. and DENIS, L., 2010. Alow-noise, high-dynamic-range, digital receiver for radio astronomy applications: an efficient solution for observing radio-bursts from Jupiter, the Sun, pulsars, and other astrophysical plasmas below 30 MHz. Astron. Astrophys. vol. 510, id. A16. DOI: https://doi.org/10.1051/0004-6361/200913335

13. MARPL, S. L. 1990. Digital spectral analysis with applications. Moscow, Russia: Mir Publ. (in Russian).

14. OLYAK, M. R., 2012. Large-scale structure of solar wind and geomagnetic phenomena. J. Atmos. Sol.-Terr. Phys. vol. 86, pp. 34–40. DOI: https://doi.org/10.1016/j.jastp.2012.06.011

15. HAYASHI, K., KOJIMA, M., TOKUMARU, M. and FUJIRI, K., 2003. MHD tomography using interplanetary scintillation measurement. Geophys. Res. Spase Phys. vol. 108, is. A3, pp. 1102–1123. DOI: https://doi.org/10.1029/2002JA009567

 

 


Keywords


solar wind; interplanetary scintillations; decameter range

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)