OBSERVATIONS OF NON TYPICAL MASERS AT THE RT-22 RADIO TELESCOPE IN 2004–2013

DOI: https://doi.org/10.15407/rpra22.02.112

V. M. Shulga, O. V. Antyufeyev, S. Y. Zubrin, V. V. Myshenko, V. I. Piddyachiy, A. M. Korolev, O. M. Patoka

Abstract


PACS numbers: 98.38.Er,
97.10.Fy 

Purpose: Some peculiarities of emission of Class I methanol masers on the 80–71A+  transition at 95 GHz in sources closely associated with protostar-forming regions and in supernova remnants are studied. Here belongs the investigation of SiO (J=2–1) maser variability in R Cassiopeiaе, too. 

Design/methodology/approach: Search for Class I methanol masers is based on the idea of coincidence of regions of their emission with sources of OH masing transition in the bottom level of energy at frequency of 1720 MHz (2Π3/2  J=3/2 F=2–1).

Findings: Two methanol masers on transition 80–71A+ (95 GHz) in the supernova remnants IC 443 and Kes 79 are detected. Variabilities of SiO maser emission on transition J=2–1 in R Cassiopeiaе are shown for the first time.

Conclusions: Variability of methanol and SiO masers is their general feature. On the example of three objects, the possibility of using the 1720 MHz OH maser as an indicator in the search for Class I methanol masers is shown. Especially it is important in the study of methanol maser emission in supernova remnants that has been proved to be true by detection of methanol masers on transition 80–71A+ (95 GHz) in IC 443 and Kes 79. Features of spectra variability of emission in R Cassiopeiaе testify to formation and disappearance of SiO (J=2–1) masers.

Key words: maser radiation, supernova remnants, molecular clouds, methanol, SiO

Manuscript submitted  10.03.2017

Radio phys. radio astron. 2017, 22(2): 112-122 

 

REFERENCES

1. MENTEN, K., 1991. Methanol Masers and Submillimeter Wavelength Water Masers in Star-Forming Regions. In: Atoms, Ions and Molecules: New Results in Spectral Line Astrophysics. ASP Conference Series. vol. 16, pp. 119–136.

2. BATRLA, W., MATTHEWS, H. E., MENTEN, K. M. and WALMSLEY, C. M., 1987. Detection of Strong Methanol Masers Towards Galactic H II Regions. Nature. vol. 326, no. 6108, pp. 49–51. DOI: https://doi.org/10.1038/326049a0

3. MINIER, V., ELLINGSEN, S. P., NORRIS, R. P. and BOOTH, R. S., 2003. The Protostellar Mass Limit for 6.7 GHz Methanol Masers - I. A low-mass YSO survey. Astron. Astrophys. vol. 403, no. 4, pp. 1095–1100. DOI: https://doi.org/10.1051/0004-6361:20030465

4. PESTALOZZI, M. R., MINIER, V. and BOOTH, R. S., 2005. A General Catalogue of 6.7-GHz Methanol Masers: I. Data. Astron. Astrophys. vol. 432, no. 2, pp. 737–742. DOI: https://doi.org/10.1051/0004-6361:20035855

5. ELLINGSEN, S. P., 2006. Methanol Masers: Reliable Tracers of the Early Stages of High-Mass Star Formation. Astrophys. J. vol. 638, no. 1, pp. 241–261. DOI: https://doi.org/10.1086/498673

6. HASCHICK, A. D., MENTEN, K. M. and BAAN, W. A., 1990. Detection of Widespread Strong Methanol Masers at 44 GHz. Astrophys. J. vol. 354, pp. 556–567. DOI: https://doi.org/10.1086/168715

7. SLYSH, V. I., KALENSKII, S. V., VAL'TTS, I. E. and OTRUPCEK, R., 1994. The Parkes Survey of Methanol Masers at 44.07 GHz. Mon. Not. Roy. Astron. Soc. vol. 268, is. 2, pp. 464–474. DOI: https://doi.org/10.1093/mnras/268.2.464

8. BAYANDINA, O. S., VAL'TTS, I. E. and LARIONOV, G. M., 2012. Class I Methanol Maser Emission in Infrared Clouds and the Third Version of the Astro Space Center MMI/SFR Catalog. Astron. Reps. vol. 56, no. 7, pp. 553–563. DOI: https://doi.org/10.1134/S1063772912060029

9. ELLINGSEN, S. P., 2005. The Relationship Between Class I and Class II Methanol Masers. Mon. Not. R. Astron. Soc. vol. 359, is. 4, pp. 1498–1516. DOI: https://doi.org/10.1111/j.1365-2966.2005.09010.x

10. GAN, C.-G., CHEN, X., SHEN, Z.-Q., XU, Y. and JU, B.-G., 2013. A Search for 95 GHz Class I Methanol Masers in Molecular Outflows. Astrophys. J. vol. 763, no. 1, id 2. DOI: https://doi.org/10.1088/0004-637X/763/1/2

11. KURTZ, S., HOFNER, P. and ÁLVAREZ, C. V., 2004. A Catalog of CH3OH 70–61 A+ Maser Sources in Massive Star-forming Regions. Astrophys. J. Suppl. Ser. vol. 155, no. 1, pp. 149–165. DOI: https://doi.org/10.1086/423956

12. CYGANOWSKI, C. J., BROGAN, C. L., HUNTER, T. R. and CHURCHWELL, E., 2009. A Class I and Class II CH3OH Maser Survey of EGOs from the GLIMPSE Survey. Astrophys. J. vol. 702, pp. 1615–1647. DOI: https://doi.org/10.1088/0004-637X/702/2/1615

13. HARTQUIST, T. W., MENTEN, K. M., LEPP, S. and DALGARNO, A., 1995. On the Spatial Coincidence of Hydroxyl and Methanol Masers. Mon. Not. R. Astron. Soc. vol. 272, is. 1, pp. 184–188. DOI: https://doi.org/10.1093/mnras/272.1.184

14. LITOVCHENKO, I. D., BAYANDINA, O. S., ALAKOZ, A. V., VAL'TSS, I. E., LARIONOV, G. M., MUKHA, D. V., NABATOV, A. S., KONOVALENKO, A. A., ZAKHARENKO, V. V., ALEKSEEV, E. V., NIKOLAENKO, V. S., KULISHENKO, V. F. and ODINTSOV, S. A., 2012. OH 1720-MHz Lines as Tracers of Bipolar Outflows in the Vicinity of Class I Methanol Masers. Astron. Rep. vol. 56, no. 7, pp. 536–552. DOI: 10.1134/1063772912060042

15. CRAGG, D. M., SOBOLEV, A. M. and GODFREY, P. D., 2002. Modeling Methanol and Hydroxyl Masers in Starforming Regions. Mon. Not. R. Astron. Soc. vol. 331, is. 2, pp. 521–536. DOI: https://doi.org/10.1046/j.1365-8711.2002.05226.x

16. ELITZUR, M., 1976. Inversion of the OH 1720-MHz Line. Astrophys. J. vol. 203, pp. 124–131. DOI: https://doi.org/10.1086/154054

17. TURNER, B. E., 1979. A Survey of OH Near the Galactic Plane. Astron. Astrophys. Suppl. Ser. vol. 37, pp. 1–332.

18. EDRIS, K. A., FULLER, G. A. and COHEN, R. J., 2007. A Survey of OH Masers Towards High Mass Protostellar Objects. Astron. Astrophys. vol. 465, no. 3, pp. 865–877. DOI: https://doi.org/10.1051/0004-6361:20066280

19. CLAUSSEN, M. J., FRAIL, D. A., GOSS, W. M. and GAUME, R. A., 1997. Polarization Observations of 1720 MHz OH Masers Toward the Three Supernova Remnants W28, W44, and IC 443. Astrophys. J. vol. 489, no. 1, pp. 143–159. DOI: https://doi.org/10.1086/304784

20. FRAIL, D. A., GOSS, W. M., REYNOSO, E. M., GIACANI, E. B., GREEN, A. J. and OTRUPCEK, R., 1996. A Survey for OH (1720 MHz) Maser Emission Toward Supernova Remnants. Astron. J. vol. 111, pp. 1651–1659. DOI:
https://doi.org/10.1086/117904

21. SRIDHARAN, T. K., BEUTHER, H., SCHILKE, P., MENTEN, K. M. and WYROWSKI, F., 2002. High-Mass Protostellar Candidates. I. The Sample and Initial Results. Astrophys. J. vol. 566, no. 2, pp. 931–944. DOI:
https://doi.org/10.1086/338332

22. BEUTHER, H., SCHILKE, P., MENTEN, K. M., MOTTE, F., SRIDHARAN, T. K. and WYROWSKI, F., 2002. High-Mass Protostellar Candidates. II. Density Struc ture from Dust Continuum and CS Emission. Astrophys. J. vol. 566, no. 2, pp. 945–965. DOI: https://doi.org/10.1086/338334

23. WILLIAMS, S. J, FULLER, G. A. and SRIDHARAN, T. K., 2004. The Circumstellar Environments of High-Mass Protostellar Objects – I. Submillimetre Continuum Emission. Astron. Astrophys. vol. 417, no. 1, pp. 115–133. DOI: https://doi.org/10.1051/0004-6361:20031733

24. FULLER, G. A., WILLIAMS, S. J. and SRIDHARAN, T. K., 2005. The Circumstellar Environment of High-Mass Protostellar Objects - III. Evidence of Infall? Astron. Astrophys. vol. 442, no. 3, pp. 949–959. DOI: https://doi.org/10.1051/0004-6361:20042110

25. MENTEN, K. M., 1991. The Discovery of a New, Very Strong, and Widespread Interstellar Methanol Maser Line. Astrophys. J. vol. 380, pp. L75–L78. DOI: https://doi.org/10.1086/186177

26. TOFANI, G., FELLI, M., TAYLOR, G. B. and HUNTER, T. R., 1995. Exploring the Engines of Molecular Outflows. Radio Continuum and H2O Maser Observations. Astron. Astrophys. Suppl. Ser. vol. 112, pp. 299–346.

27. MINIER, V. and BOOTH, R. S., 2002. A Methanol Line Survey Toward High-Mass Star-Forming Regions. Astron. Astrophys. vol. 387, pp. 179–186. DOI: https://doi.org/10.1051/0004-6361:20020290

28. SNELL, R. L., DICKMAN, R. L. and HUANG, Y.-L., 1990. Molecular Outflows Associated with a Flux-Limited Sample of Bright Far-Infrared Sources. Astrophys. J. vol. 352, pp. 139–148. DOI: https://doi.org/10.1086/168521

29. BEUTHER, H., SCHILKE, P., GUETH, F., MCCAUGHREAN, M., ANDERSEN, M., SRIDHARAN, T. K. and MENTEN, K. M., 2002. IRAS 05358+3543: Multiple Outflows at the Earliest Stages of Massive Star Formation. Astron. Astrophys. vol. 387, no. 3, pp. 931–943. DOI: https://doi.org/10.1051/0004-6361:20020319

30. SZYMCZAK, M., HRYNEK, G. and KUS, A. J., 2000. A Survey of the 6.7 GHz Methanol Maser Emission from IRAS sources – I. Data. Astron. Astrophys. Suppl. Ser. vol. 143, no. 2, pp. 269–301. DOI: https://doi.org/10.1051/aas:2000334

31. BACHILLER, R., MENTEN, K. M., GOMEZ-GONZALEZ, J. and BARCIA, A., 1990. The 44 GHz Methanol Masers – Results of an Extensive Survey in the 70–61A+ Line. Astron. Astrophys. vol. 240, pp. 116–122.

32. KALENSKII, S. V., LILJESTROEM, T., VAL'TTS, I. E., VASIL'KOV, V. I., SLYSH, V. I. and URPO, S., 1994. Observations of Methanol Masers at 95 GHz. Astron. Astrophys. Suppl. Ser. vol. 103, pp. 129–134.

33. MINIER, V., BURTON, M. G., HILL, T., PESTALOZZI, M. R., PURCELL, C. R., GARAY, G., WALSH, A. J. and LONGMORE, S., 2005. Star-Forming Protoclusters Associated with Methanol Masers. Astron. Astrophys. vol. 429, no. 3, pp. 945–960. DOI: https://doi.org/10.1051/0004-6361:20041137

34. GOSS, W. M. and ROBINSON, B. J., 1968. OH Emission at 1720 MHz in the Direction of Non-Thermal Galactic Sources. Astrophys. Lett. vol. 2, pp. 81–86.

35. GREEN, D. A., 1989. Sensitive OH Observations Towards 16 Supernova Remnants. Mon. Not. R. Astron. Soc. vol. 238, is. 3, pp. 737–751. DOI:https://doi.org/10.1093/mnras/238.3.737

36. YUSEF-ZADEH, F., WARDLE, M., RHO, J. and SAKANO, M., 2003. OH (1720 MHz) Masers and Mixed-Morphology Supernova Remnants. Astrophys. J. vol. 585, no. 1, pp. 319–323. DOI:https://doi.org/10.1086/345932

37. WARDLE, M., YUSEF-ZADEH, F. and GEBALLE, T. R., 1998. A Model for OH (1720 MHz) Masers Associated with Supernova Remnants, and an Application to Sgr A East. ArXiv Astrophysics e-prints. [online]. Available from: https://arxiv.org/abs/astro-ph/9804146

38. HEWITT, J. W., YUSEF-ZADEH, F., WARDLE, M., ROBERTS, D. A. and KASSIM, N. E., 2006. Green Bank Telescope Observations of IC 443: The Nature of OH (1720 MHz) Masers and OH Absorption. Astrophys. J. vol. 652, no. 2, pp. 1288–1296. DOI:https://doi.org/10.1086/508331

39. HEWITT, J. W., YUSEF-ZADEH, F. and WARDLE, M., 2008. A Survey of Hydroxyl Toward Supernova Remnants: Evidence for Extended 1720 MHz Maser Emission. Astrophys. J. vol. 683, no. 1, pp. 189–206. DOI:https://doi.org/10.1086/588652

40. SHULGA, V. M., ZUBRIN, S. Y. and MYSHENKO, V. V., 2012. Observation of 13CO and Methanol Line Emission from Supernova Remnant Kes 79. Radio Phys. Radio Astron. vol. 3, is. 1, pp. 19–26. DOI: 10.1615/RadioPhysicsRadioAstronomy.v3.i1.30

41. ZUBRIN, S. Y. and SHULGA, V. M., 2008. The 95 GHz Methanol Maser towards the Supernova Remnant Kes 79. In: 15th Young Scientists Conference Proceedings. Kyiv, Ukraine: Taras Shevchenko National University, pp. 41–43.

42. FRAIL, D. A., 2011. Supernova Remnant Shock – Molecular Cloud Interactions. Masers as Tracers of Hadronic Particle Acceleration. Mem. S. A. It. vol. 82, pp. 703–708.

43. PIHLSTRÖM, Y. M., SJOUWERMAN, L. O., FRAIL, D. A., CLAUSSEN, M. J., MESLER, R. A. and MCEWEN, B. C., 2014. Detection of Class I Methanol (CH3OH) Maser Candidates in Supernova Remnants. Astron. J. vol. 147, no. 4, pp. 73–81. DOI:https://doi.org/10.1088/0004-6256/147/4/73

44. MCEWEN, B. C., PIHLSTRÖM, Y. M. and SJOUWERMAN, L. O., 2014. Class I Methanol (CH3OH) Maser Conditions near Supernova Remnants. Astrophys. J. vol. 793, no. 2, id. 133. DOI:https://doi.org/10.1088/0004-637X/793/2/133

45. CASE, G. L. and BHATTACHARYA, D., 1998. A New Σ-D Relation and Its Application to the Galactic Supernova Remnant Distribution. Astrophys. J. vol. 504, no. 2, pp. 761–772. DOI:https://doi.org/10.1086/306089

46. SEWARD, F. D., SLANE, P. O., SMITH, R. K. and SUN, M., 2003. A Compact Central Object in the Supernova Remnant Kesteven 79. Astrophys. J. vol. 584, no. 1, pp. 414–417. DOI:https://doi.org/10.1086/345600

47. GOTTHELF, E. V., HALPERN, J. P. and SEWARD, F. D., 2005. Discovery of a 105 ms X-Ray Pulsar in Kesteven 79: On the Nature of Compact Central Objects in Supernova Remnants. Astrophys. J. vol. 627, no. 1, pp. 390–396. DOI:https://doi.org/10.1086/430300

48. SCOVILLE, N. Z., YUN, M. S., CLEMENS, D. P., SANDERS, D. B. and WALLER, W. H., 1987. Molecular Clouds and Cloud Cores in the Inner Galaxy. Astrophys. J. Suppl. Ser. vol. 63, pp. 821–915. DOI:https://doi.org/10.1086/191185

49. GREEN, D. A. and DEWDNEY, P. E., 1992. Shocked Molecular Material Associated with the Supernova Remnant G33.6+0.1? Mon. Not. R. Astron. Soc. vol. 254, is. 4, pp. 686–692. DOI:https://doi.org/10.1093/mnras/254.4.686

50. GREEN, A. J., FRAIL, D. A., GOSS, W. M. and OTRUPCEK, R., 1997. Continuation of a Survey of OH (1720 MHz) Maser Emission Towards Supernova Remnants. Astron. J. vol. 114, pp. 2058–2067. DOI:https://doi.org/10.1086/118626

51. HACHISUKA, K., BRUNTHALER, A., MENTEN, K. M., REID, M. J., IMAI, H., HAGIWARA, Y., MIYOSHI, M., HORIUCHI, S. and SASAO, T., 2006. Water Maser Motions in W3(OH) and a Determination of Its Distance. Astrophys. J. vol. 645, pp. 337–344. DOI:https://doi.org/10.1086/502962

52. QIN, S.-L., SCHILKE, P., WU, J., LIU, T., WU, Y., SÁNCHEZ-MONGE, Á. and LIU, Y., 2016. SMA Observations of the W3(OH) Complex: Dynamical Differentiation Between W3(H2O) and W3(OH). Mon. Not. R. Astron. Soc. vol. 456, is. 3, pp. 2681–2691. DOI:https://doi.org/10.1093/mnras/stv2801

53. SUTTON, E. C., SOBOLEV, A. M., ELLINGSEN, S. P., CRAGG, D. M., MEHRINGER, D. M., OSTROVSKII, A. B. and GODFREY, P. D., 2001. New Class II Methanol Masers in W3(OH). Astrophys. J. vol. 554, pp. 173–189. DOI:https://doi.org/10.1086/321349

54. VAL'TTS, I. E., DZURA, A. M., KALENSKII, S. V., SLYSH, V. I., BOOTH, R. S. and WINNBERG, A., 1995. The Discovery of Methanol Masers at 107 GHz. Astron. Astrophys. vol. 294, pp. 825–830.

55. SLYSH, V. I., VAL'TTS, I. E., KALENSKII, S. V. and LARIONOV, G. M., 1999. Class II Methanol Masers – Planets Around an O-Star. Astron. Rep. vol. 43, pp. 657–662.

56. MCINTOSH, G. C. and PATRIAT, R., 2010. The Lifetime of R Cassiopeia's SiO Maser Features. Publ. Astron. Soc. Pac. vol. 122, no. 896, pp. 1187–1194. DOI:https://doi.org/10.1086/656420

 


Keywords


maser radiation; supernova remnants; molecular clouds; methanol; SiO

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)