GLOBAL STATISTICS OF BOLIDES IN THE TERRESTRIAL ATMOSPHERE
Abstract
PACS numbers: 93., 96.30.Ys
Purpose: Evaluation and analysis of distribution of the number of meteoroid (mini asteroid) falls as a function of glow energy, velocity, the region of maximum glow altitude, and geographic coordinates.
Design/methodology/approach: The satellite database on the glow of 693 mini asteroids, which were decelerated in the terrestrial atmosphere, has been used for evaluating basic meteoroid statistics.
Findings: A rapid decrease in the number of asteroids with increasing of their glow energy is confirmed. The average speed of the celestial bodies is equal to about 17.9 km/s. The altitude of maximum glow most often equals to 30–40 km. The distribution law for a number of meteoroids entering the terrestrial atmosphere in longitude and latitude (after excluding the component in latitudinal dependence due to the geometry) is approximately uniform.
Conclusions: Using a large enough database of measurements, the meteoroid (mini asteroid) statistics has been evaluated.
Key words: bolides, meter-size asteroid, mini asteroid velocity, altitude of maximum glow, statistics distributions
Manuscript submitted 06.04.2017
Radio phys. radio astron. 2017, 22(2): 138-145
REFERENCES
1. STULOV, V. P., MIRSKII, V. N., and VISLYI, A. I., 1995. Aerodynamics of Bolides. Moscow, Russia: Nauka Publ. (in Russian).
2. ADUSHKIN, V. V. and NEMCHINOV, I. V. (eds), 2005. Catastrophic Impacts of Cosmic Bodies. Moscow, Russia: ECC Akademkniga Publ. (in Russian).
3. SHUSTOV, B. M. and RYHLOVA, L. V. (eds.), 2010. Asteroid-Comet Hazards: Yesterday, Today, and Tomorrow. Moscow, Russia: Fizmatlit Publ. (in Russian).
4. CHERNOGOR, L. F., 2012. Physics and Ecology of Disasters. Kharkiv: V. N. Karazin Kharkiv National University Publ. (in Russian).
5. CHERNOGOR, L. F., 2003. Physics of Earth, Atmosphere, and Geospace from the Standpoint of System Paradigm. Radio Phys. Radio Astron. vol. 8, no. 1, pp. 59–106 (in Russian).
6. CHERNOGOR, L. F., ROZUMENKO, V. T., 2008. Earth – Atmosphere – Geospace as an Open Nonlinear Dynamical System. Radio Phys. Radio Astron. vol. 13, no. 2, pp. 120–137.
7. CHERNOGOR, L. F., 2011. The Earth – Atmosphere – Geospace system: main properties and processes. Int. J. Remote Sens. vol. 32, is. 11, pp. 3199–3218. DOI:https://doi.org/10.1080/01431161.2010.541510
8. POPOVA, O. P., JENNISKENS, P., EMELYANENKO, V., KARTASHOVA, A., BIRYUKOV, E., KHAIBRAKHMANOV, S., SHUVALOV, V., RYBNOV, Y., DUDOROV, A., GROKHOVSKY, V. I., BADYUKOV, D. D.,YIN, Q.-Z., GURAL, P. S., ALBERS, J., GRANVIK, M., EVERS, L. G., KUIPER, J., HARLAMOV, V., SOLOVYOV, A., RUSAKOV, Y. S., KOROTKIY, S., SERDYUK, I., KOROCHANTSEV, A. V., LARIONOV, M. Y., GLAZACHEV, D., MAYER, A. E., GISLER, G., GLADKOVSKY, S. V., WIMPENNY, J., SANBORN, M. E., YAMAKAWA, A., VEROSUB, K. L., ROWLAND, D. J., ROESKE, S., BOTTO, N. W., FRIEDRICH, J. M., ZOLENSKY, M. E, LE, L., ROSS, D., ZIEGLER, K., NAKAMURA, T., AHN, I., LEE, J. I., ZHOU, Q., LI, X. H., LI, Q. L., LIU, Y., TANG, G.-Q., HIROI, T., SEARS, D., WEINSTEIN, I. A., VOKHMINTSEV, A. S., ISHCHENKO, A. V., SCHMITT-KOPPLIN, P., HERTKORN, N., NAGAO, K., HABA, M. K., KOMATSU, M. and MIKOUCHI, T., 2013. Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science. vol. 342, is. 6162, pp. 1069–1073. DOI:https://doi.org/10.1126/science.1242642
9. POPOVA, O. P., JENNISKENS, P., EMELYANENKO, V., KARTASHOVA, A., BIRYUKOV, E., KHAIBRAKHMANOV, S., SHUVALOV, V., RYBNOV, Y., DUDOROV, A., GROKHOVSKY, V. I., BADYUKOV, D. D., YIN, Q.-Z., GURAL, P. S., ALBERS, J., GRANVIK, M., EVERS, L. G., KUIPER, J., HARLAMOV, V., SOLOVYOV, A., RUSAKOV, Y. S., KOROTKIY, S., SERDYUK, I., KOROCHANTSEV, A. V., LARIONOV, M. Y., GLAZACHEV, D., MAYER, A. E., GISLER, G., GLADKOVSKY, S. V., WIMPENNY, J., SANBORN, M. E., YAMAKAWA, A., VEROSUB, K. L., ROWLAND, D. J., ROESKE, S., BOTTO, N. W., FRIEDRICH, J. M., ZOLENSKY, M. E, LE, L., ROSS, D., ZIEGLER, K., NAKAMURA, T., AHN, I., LEE, J. I., ZHOU, Q., LI, X. H., LI, Q. L., LIU, Y., TANG, G.-Q., HIROI, T., SEARS, D., WEINSTEIN, I. A., VOKHMINTSEV, A. S., ISHCHENKO, A. V., SCHMITT-KOPPLIN, P., HERTKORN, N., NAGAO, K., HABA, M. K., KOMATSU, M. and MIKOUCHI, T., 2013. Supplementary materials for Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science [online]. vol. 342. [viewed 30 January 2017]. Available from: https:// sciencemag.org/cgi/content/full/science.1242642/DC1
10. CHERNOGOR, L. F., 2013. Plasma, electromagnetic and acoustic effects of meteorite Chelyabinsk. Inzhenernaya fizika. no. 8, pp. 23–40 (in Russian).
11. CHERNOGOR, L. F., 2013. Physical effects of the Chelyabinsk meteorite passage. Dopov. Nac. akad. nauk Ukr. no. 10, pp. 97–104 (in Russian).
12. YAZEV, S. A. and ANTIPIN, V. G., 2004. Following the Vitimsk bolide wake. Zemlya i Vselennaya. no. 5, pp. 59–72 (In Russian).
13. BROWN, P., REVELLE, D. O., SILBER, E. A., EDWARDS, W. N., ARROWSMITH, S., JACKSON JR., L. E., TANCREDI, G. and EATON, D., 2008. Analysis of a crater-forming meteorite impact in Peru. J. Geophys. Res. vol. 113, is. E9, id. E09007. DOI:https://doi.org/10.1029/2008JE003105
14. TAGLIAFERRI, E., SPALDING, R., JACOBS, C., WORDEN, S. P. and ERLICH, A., 1994. Detection of meteoroid impacts by optical sensors in Earth orbit. In: T. GEHRELS, ed. Hazards due to Comets and Asteroids. Tucson: Univ. Arizona Press, pp. 199–220.
Keywords
Full Text:
PDFCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)