SEARCH FOR RADIO COUNTERPARTS OF GRAVITATIONAL-WAVE EVENTS DETECTED BY LIGO/VIRGO EXPERIMENTS IN THE DATA OF DAILY SURVEY OF BSA LPI AT 110 MHZ

DOI: https://doi.org/10.15407/rpra22.04.284

V. A. Samodurov, A. S. Pozanenko, M. O. Toropov, A. E. Rodin, D. D. Churakov, D. V. Dumskij, E. A. Isaev, A. N. Kazantsev, S. V. Logvinenko, V. V. Oreshko

Abstract


PACS numbers: 95.85.Sz,
98.70.Dk 

Purpose: One of the most interesting goals for astronomers are multi-range observations of space objects – not only in different spectral ranges, but also using other sources of information, for example, studies of objects emitting gravitational waves.

Design/methodology/approach: The BSA LPI (Big Scanning Antenna of Lebedev Physical Institute) radio telescope has a multi-beam diagram and is capable of recording daily in the frequency range 109–111.5 MHz in 96 beams in the declination range from -8° to +42° daily logs 87.5 GB of data (32 TB per year). The number of frequency bands is within 6 to 32 for the time constant from 0.1 to 0.0125 s.

Findings: One of the scientific tasks in processing the data obtained is to search for responses to extragalactic transient events, which a priori should have large dispersion delays (DM ~ 100-2000 pc ·cm -³). Such events include fast radio bursts (FRB) detected so far only at frequencies of 1 GHz and higher, afterglow of nearby cosmic gamma-ray bursts (GRB), in the gamma and X-ray bands, and, finally, possible electromagnetic counterparts of gravitational-wave events recorded in the LIGO-Virgo experiments. The last ones are taken in this paper as a basis for perfection of the technique of searching the like events from the BSA radio data. We provide a brief description of the methodology for finding and estimating the upper limits of possible transient radio sources accompanying the gravitational wave events GW150914, GW151226, LVT151012, and GW170104 recorded by the LIGO detectors.

Сonclusions: It is established that nothing brighter than 50000 Jy in the northern hemisphere of the sky at 110 MHz was not observed at the moment of gravitational events. The estimates of energy release in the long-wave radio range are also made: the energy of the low-frequency range is  ≤ 1044 erg, while the ratio of the low-frequency range energy to the energy of the gravitational event is ≤10-10

Key words: radio observation, gravitational event, search technique 

Manuscript submitted 20.10.2017  

Radio phys. radio astron. 2017, 22(4): 284–293

REFERENCES

1. ABBOTT, B. P., ABBOTT, R., ABBOTT, T. D., ABERNATHY, M. R., ACERNESE, F., ACKLEY, K., ADAMS, C., ADAMS, T., ADDESSO, P., ADHIKARI, R. X. and 969 coauthors, 2016. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett. vol. 116, is. 24, id. 241103.  DOI: https://doi.org/10.1103/PhysRevLett.116.241103

2. ABBOTT, B. P., ABBOTT, R., ABBOTT, T. D., ABERNATHY, M. R., ACERNESE, F., ACKLEY, K., ADAMS, C., ADAMS, T., ADDESSO, P., ADHIKARI, R. X. and 965 coauthors, 2016. Binary Black Hole Mergers in the first Advanced LIGO Observing Run. Phys. Rev. X. vol. 6, is. 4, id. 041015.  DOI: https://doi.org/10.1103/PhysRevX.6.041015

3. ABBOTT, B. P., ABBOTT, R., ABBOTT, T. D., ACERNESE, F., ACKLEY, K., ADAMS, C., ADAMS, T., ADDESSO, P., ADHIKARI, R. X., ADYA, V. B. and 1041 coauthors, 2017. GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Let. vol. 118, is. 22, id. 221101.  DOI: https://doi.org/10.1103/PhysRevLett.118.221101

4. SMARTT, S. J., CHAMBERS, K. C., SMITH, K. W., HUBER, M. E., YOUNG, D. R., CHEN, T.-W., INSERRA, C., WRIGHT, D. E., COUGHLIN, M., DENNEAU, L. and 30 coauthors, 2016. A search for an optical counterpart to the gravitational-wave event GW151226. Astrophys. J. Lett. vol. 827, no. 2, id. L40.  DOI: https://doi.org/10.3847/2041-8205/827/2/L40

5. RACUSIN, J. L., BURNSET, E., GOLDSTEINAL, A., CONNAUGHTON, V., WILSON-HODGE, C. A., JENKE, P., BLACKBURN, L., BRIGGS, M. S., BROIDA, J., CAMP, J. and 133 coauthors, 2017. Searching the Gamma-ray Sky for Counterparts to Gravitational Wave Sources: Fermi GBM and LAT Observations of LVT151012 and GW151226. Astrophys. J. vol. 835, no. 1, id. 82. DOI: https://doi.org/10.3847/1538-4357/835/1/82

6. ABBOTT, B. P., ABBOTT, R., ABBOTT, T. D., ABERNATHY, M. R., ACERNESE, F., ACKLEY, K., ADAMS, C., ADAMS, T., ADDESSO, P., ADHIKARI, R. X. and 1567 coauthors, 2016. Localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophys. J. Lett. vol. 826, no. 1, id. L13.  DOI: https://doi.org/10.3847/2041-8205/826/1/L13

7. JONKER, P., 2015. GCN CIRCULAR 18345 (MWA), 18363, 18655 (ASKAP), 18364, 18424, 18690 (LOFAR) [online].  https://gcn.gsfc.nasa.gov/gcn3/18364.gcn3

8. ORESHKO, V. V., 2014. The state and prospects for LPI PRAO radiotelescopes [online]. (in Russian). Available from:  http://www.prao.ru/conf/rrc2014/docs/22092014/06_Oreshko.pdf

 9. VAN HAARLEM, M. P., WISE, M. W., GUNST, A. W., HEALD, G., MCKEAN, J. P., HESSELS, J. W. T., DE BRUYN, A. G., NIJBOER, R., SWINBANK, J., FALLOWS, R. and 191 coauthors, 2013. LOFAR: The LOw-Frequency Array. Astron. Astrophys. vol. 556, id. A2. DOI: https://doi.org/10.1051/0004-6361/201220873

10. LORIMER, D. R., BAILES, M., MCLAUGHLIN, M. A., NARKEVIC, D. J. and CRAWFORD, F. A., 2007. Bright Millisecond Radio Burst of Extragalactic Origin. Science. vol. 318, is. 5851, pp. 777–780. DOI: https://doi.org/10.1126/science.1147532

11. BHAT, N. D. R., CORDES, J. M., CAMILO, F., NICE, D. J. and LORIMER, D. R., 2004. Multifrequency Observations of Radio Pulse Broadening and Constraints on Interstellar Electron Density Microstructure. Astrophys. J. vol. 605, no. 2, pp. DOI: https://doi.org/10.1086/382680

12. KUZ’MIN, A. D., LOSOVSKII, B. YA. and LAPAEV, K. A., 2007. Measurements of the scattering of pulsar radio emission. Аstron. Rep. vol. 51, is. 8, pp. 615–623. DOI: https://doi.org/10.1134/S1063772907080021

13. DENEVA, J. S., STOVALL, K., MCLAUGHLIN, M. A., BAGCHI, M., BATES, S. D., FREIRE, P. C. C., MARTINEZ, J. G., JENET, F. and GARVER-DANIELS, N., 2016. New Discoveries from the Arecibo 327 MHz Drift Pulsar Survey Radio Transient Search. Astrophys. J. vol. 821, no. 1, id. 10. DOI: https://doi.org/10.3847/0004-637X/821/1/10

14. SAVCHENKO, V., FERRIGNO, C., MEREGHETTI, S., NATALUCCI, L., BAZZANO, A., BOZZO, E., BRANDT, S., COURVOISIER, T. J.-L., DIEHL, R., HANLON, L., VON KIENLIN, A., KUULKERS, E., LAURENT, P., LEBRUN, F., ROQUES, J. P., UBERTINI, P. and WEIDENSPOINTNER, G., 2016. INTEGRAL upper limits on gamma-ray emission associated with the gravitational wave event GW150914. Astrophys. J. Lett. vol. 820, no. 2, id. L36. DOI: https://doi.org/10.3847/2041-8205/820/2/L36

15. LYUTIKOV, M., 2016. Fermi GBM signal contemporaneous with GW150914 - an unlikely association. arXiv:1602.07352 [astro-ph.HE] [online]. Available from: https://arxiv.org/abs/1602.07352

16. POSTNOV, K. A. and PSHIRKOV, M. S., 2009. Radio transients from neutron stars binary mergers. arXiv:0912.5216 [astro-ph.HE] [online]. Available from: https://arxiv.org/abs/0912.5216

17. MOORTGAT, J. and KUIJPERS, J., 2004. Gravitational waves in magnetized relativistic plasmas. Phys. Rev. D. vol. 70, is. 2, id. 023001. DOI: https://doi.org/10.1103/PhysRevD.70.023001

18. FEDOROVA, V.A., 2016. FRBs: search for variations of low-frequency radio emission from the corresponding areas of the sky. In: “High Energy Astrophysics Today and Tomorrow” Conference Proceedings [online]. Moscow, Russia, December 20-23. Available from:  http://hea.iki.rssi.ru/heaconf/hea/2016/hea/talk/63/ 

 


Keywords


radio observation; gravitational event; search technique

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)