MILLIMETER WAVE SATELLITE RADAR FOR INVESTIGATION OF THE MOON’S SURFACE: A PROPOSAL

DOI: https://doi.org/10.15407/rpra23.03.212

V. G. Galushko, V. V. Vinogradov, Y. G. Shkuratov

Abstract


 PACS numbers: 07.87.+V,
95.85.Bh, 96.20.–n

Purpose: Development and justification of the concept of construction of a millimeter wave satellite radar for investigation of the Moon’s surface and estimation of the radar performance characteristics for operation in the modes of active location, including aperture synthesis, and passive radiometric sounding.

Design/methodology/approach: To map the Moon’s surface with a high spatial resolution and search of anomalies in the thermal radiation field, it is suggested to use a satellite millimeter wave radar capable of operating in the side-looking/squintlooking synthetic aperture mode.

Findings: Three operation modes of a millimeter wave satellite radar are suggested and justified for investigating the Moon’s surface. The considered modes include active monostatic sounding of the Moon’s surface with a rather crude spatial resolution (approximately 1400×1000 m), construction of radio images and restoration of the relief of the Moon’s surface (or its individual areas) with a high resolution (resolution cell size  ≤ 22×25 m) using algorithms of side-looking/squint-looking aperture synthesis, and passive (radiometric) sounding of the temperature field with resolution about 1400×2000 m. Estimates of the basic parameters and power of the radar required to provide sufficiently high signal-to-power ratios in each of these modes are obtained.

Conclusions: Experiments using the suggested radar would allow estimating the electrophysical and structural parameters of the upper layer of the regolith several centimeters in thickness, determining the reflective properties of the Moon’s surface and recovering a 3D image of its relief with a high resolution (a few dozens of meters), and also investigating the spatial distribution and anomalies of the thermal radiation with the aim of searching irregularities in the structure of the Moon’s crust.

Key words: satellite radar, synthetic aperture, radiometric mode, Moon’s surface, regolith

Manuscript submitted 09.07.2018

Radio phys. radio astron. 2018, 23(3): 212-228

REFERENCES

1. KELLER, J. W., PETRO, N. E., VONDRAK, R. R. and THE LRO TEAM, 2016. The Lunar Reconnaissance Orbiter Mission – Six years of science and exploration at the Moon. Icarus. vol. 273, pp. 2–24. DOI: https://doi.org/10.1016/j.icarus.2015.11.024

2. VONDRAK, R. R., KELLER, J. W. and RUSSELL, C. T., eds., 2010. Lunar Reconnaissance Orbiter Mission. New York: Springer. DOI: https://doi.org/10.1007/978-1-4419-6391-8

3. GOSWAMI, J. N. and ANNADURAI, M., 2009. Chandrayaan-1: India’s first planetary science mission to the Moon. Current Science. vol. 96, no. 4, pp. 486–491.

4. YAN SU, GUANG-YOU FANG, JIAN-QING FENG, SHU-GUO XING, YI-CAI JI, BIN ZHOU, YUN-ZE GAO, HAN LI, SHUN DAI, YUAN XIAO and CHUNLAI LI, 2014. Data processing and initial results of Chang’e-3 lunar penetrating radar. Res. Astron. Astrophys. vol. 14, no. 12., pp. 1623–1632. DOI: https://doi.org/10.1088/1674-4527/14/12/010

5. GUANG-YOU FANG, BIN ZHOU, YI-CAI JI, QUNYING ZHANG, SHAO-XIANG SHEN, YU-XI LI, HONG-FEI GUAN, CHUAN-JUN TANG, YUN-ZE GAO, WEI LU, SHENG-BO YE, HAI-DONG HAN, JIN ZHENG and SHU-ZHI WANG, 2014. Lunar Penetrating Radar onboard the Chang’e-3 mission. Res. Astron. Astrophys. vol. 14, no. 12, pp. 1607–1622. DOI: https://doi.org/10.1088/1674-4527/14/12/009

6. JIN WEIDONG, ZHANG HAO, YUAN YE, YANG YAZHOU, LUCEY PAUL, SHKURATOV YURIY, KAYDASH VADIM, ZHU MENG-HUA, XUE BIN, DI KAICHANG, WAN WENHUI, XU BIN, XIAO LONG and WANG ZIWEI, 2015. In-situ optical measurements of Chang’E-3 landing site in Mare Imbrium: 2. Photometric properties of the regolith. Geophys. Res. Lett. vol. 42, is. 20, pp. 8312–8319. DOI: https://doi.org/10.1002/2015GL065789

7. ZHANG HAO, YANG YAZHOU, JIN WEIDONG, YUAN YE, LUCEY PAUL, ZHU MENG-HUA, KAYDASH VADIM, SHKURATOV YURIY, DI KAICHANG, WAN WENHUI, XU BIN, XIAO LONG, WANG ZIWEI, and XUE BIN, 2015. In-situ optical measurements of Chang’E-3 landing site in Mare Imbrium: 1. Mineral abundances inferred from spectral reflectance. Geophys. Res. Lett. vol. 42, is. 17, pp. 6945–6950. DOI: https://doi.org/10.1002/2015GL065273

8. SHIN-ICHI SOBUE, HAYATO OKUMURA, SUSUMU SASAKI, MANABU KATO, HIRONORI MAEJIMA, HIROYUKI MINAMINO, SATORU NAKAZAWA, HISASHI OTAKE, NAOKI TATENO, HISASHI KONISHI, KATSUHIDE YONEKURA, HOSHINO HIROKAZU and JUN KIMURA, 2009. The project highlight of Japan’s Lunar Explorer Kaguya (SELENE). In: Proceedings of the 40th Lunar Planet. Sci. Conf. March 23–27, Houston, Texas, USA, id. 1224.

9. ONO, T. and OYA, H., 2000. Lunar Radar Sounder (LRS) experiment on-board the SELENE spacecraft. Earth Planets Space. vol. 52, no. 9, pp. 629–637. DOI: https://doi.org/10.1186/BF03351671

10. VANIMAN, D., FRENCH, B. and HEIKEN, G., 1991. Chapter 11. Afterword. In: G. H. HEIKEN, D. T. VANIMAN, B. M. FRENCH, eds. Lunar Sourcebook. New York: Cambridge University Press, pp. 633–641.

11. SCHMITT, H. H., 2006. Return to the Moon: Exploration, Enterprise, and Energy in the Human Settlement of Space. New York: Copernicus books, Springer-Verlag. DOI: https://doi.org/10.1007/0-387-31064-9

12. WITTENBERG, L., SANTARIUS J. and KULCHINSKI, G., 1986. Lunar source of 3He for commercial fusion power. Fusion Technol. vol. 10, no. 2, pp. 167–178. DOI: 10.13182/ FST86-A24972

13. TAYLOR, L. A., 1994. Helium-3 on the Moon: model assumptions and abundances. In: Engineering Construction & Operations in SPACE IV. Proceedings of Space ’94. New York: ASCE Publ. vol. 1, pp. 678–686.

14. BURNS, J. O., DURIC, N., TAYLOR, G. J. and JOHNSON, S. W., 1990. Observatories on the Moon. Sci. Amer. vol. 262, no. 3, pp. 18–25. DOI: https://doi.org/10.1038/scientificamerican0390-42

15. CRAWFORD, I. A. and ZARNECK, I. J., 2008. Astronomy from the Moon. Astron. Geophys. vol. 49, is. 2, pp. 2.17–2.19. DOI: https://doi.org/10.1111/j.1468-4004.2008.49217.x

16. JESTER, S. and FALCKE, H., 2009. Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets. New Astron. Rev. vol. 53, pp. 1–26. DOI: https://doi.org/10.1016/j.newar.2009.02.001

17. MIMOUN, D., WEICZOREK, M. A., ALKALAI, L., BANERDT, W. B., BARATOUX, D., BOUGERET, J.-L., BOULEY, S., CECCONI, B., FALCKE, H., FLOHRER, J., GARCIA, R. F., GRIMM, R., GROTT, M., GURVITS, L., JAUMANN, R., JOHNSON, C. L., KNAPMEYER, M., KOBAYASHI, N., KONOVALENKO, A., LAWRENCE, D., LE FEUVRE, M., LOGNONNÉ, P., NEAL, C., OBERST, J., OLSEN, N., RÖTTGERING, H., SPOHN, T., VENNERSTROM, S., WOAN, G. and ZARKA, P., 2012. Farside explorer: unique science from a mission to the farside of the Moon. Exp. Astron. vol. 33, pp. 529–585. DOI: https://doi.org/10.1007/s10686-011-9252-3

18. CRAWFORD, I. A. and JOY, K. H., 2014. Lunar exploration: opening a window into the history and evolution of the inner Solar System. Phil. Trans. R. Soc. A. vol. 372, is. 2024, id. 20130315. DOI: https://doi.org/10.1098/rsta.2013.0315

19. SHKURATOV, Y. G., KONOVALENKO, O. O., ZAKHARENKO, V. V., STANISLAVSKY, O. O., BANNIKOVA, O. Y., KAYDASH, V. G., STANKEVICH, D. G., KOROKHIN, V. V., VAVRIV, D. M., GALUSHKO, V. G., YERIN, S. M., BUBNOV, I. M., TOKARSKY, P. L., ULYANOV, O. M., STEPKIN, S. V., LYTVYNENKO, L. M., YATSKIV, Y. S., VIDEEN, G., ZARKA, P. and RUCKER, H. O., 2018. Ukrainian mission to the Moon: Goals and payload. Kosmichna nauka i tekhnologiya. vol. 24, no. 1, pp. 3–30 (in Ukrainian). DOI: https://doi.org/10.15407/knit2018.01.003

20. SHKURATOV, Y. G., KONOVALENKO, A. A., ZAKHARENKO, V. V., STANISLAVSKY, A. A., BANNIKOVA, E. Y., KAYDASH, V. G., STANKEVICH, D. G., KOROKHIN, V. V., VAVRIV, D. M., GALUSHKO, V. G., YERIN, S. N., BUBNOV, I. N., TOKARSKY, P. L., ULYANOV, O. M., STEPKIN, S. V., LYTVYNENKO, L. N., YATSKIV, Y. S., VIDEEN, G., ZARKA, P. and RUCKER, H. O., 2018. A twofold mission to the Moon: Objectives and payloads. Acta Astronautica. (to be published). DOI: https://doi.org/10.1016/j.actaastro.2018.03.038

21. THOMPSON, T. W., 1987. High-resolution lunar radar map at 70-cm wavelength. Earth, Moon, Planets. vol. 37, is. 1, pp. 59–70. DOI: https://doi.org/10.1007/BF00054324

22. ZISK, S. H., PETTENGILL, G. H. and CATUNA, G. W., 1974. High-resolution radar maps of the lunar surface at 3.8-cm wavelength. The Moon. vol. 10, is. 1, pp. 17–50. DOI: https://doi.org/10.1007/BF00562017

23. ART-REACT-QUICKMAP., 2018. ART-REACT-Quickmap [online]. [viewed 6 July 2018]. Available from: http://target.lroc.asu.edu/q3

24. CAMPBELL, B. A., CARTER, L. M., CAMPBELL, D. B., NOLAN, M., CHANDLER, J., GHENT, R. R., HAWKE, B. R., ANDERSON, R. F. and WELLS, K., 2010. Earth-based 12.6-cm wavelength radar mapping of the Moon: New views of impact melt distribution and mare physical properties. Icarus. vol. 208, is. 2, pp. 565–573. DOI: https://doi.org/10.1016/j.icarus.2010.03.011

25. NOZETTE, S., LICHTENBERG, C. L., SPUDIS, P., BONNER, R., ORT, W., MALARET, E., ROBINSON, M. and SHOEMAKER, E. M., 1996. The Clementine bistatic radar experiment. Science. vol. 274, is. 5292, pp. 1495–1498. DOI: https://doi.org/10.1126/science.274.5292.1495

26. SIMPSON, R. A. and TYLER, G. L., 1999. Reanalysis of Clementine bistatic radar data from the lunar South Pole. J. Geophys. Res. Planets. vol. 104, no. E2, pp. 3845–3862. DOI: https://doi.org/10.1029/1998JE900038

27. BEZVESILNIY, O. O., DUKHOPELNYKOVA, I. V., VINOGRADOV, V. V. and VAVRIV, D. M., 2007. Retrieving 3-D topography by using a single-antenna squint-mode airborne SAR. IEEE Trans. Geosci. Remote Sens. vol. 45, no. 11, pp. 3574–3582. DOI: https://doi.org/10.1109/TGRS.2007.902963

28. LEBERL, F. W., 1990. Radargrammetric image processing. Boston, MA: Artech House.

29. YOCKY, D. A., WAHL, D. E. and JAKOWARZ, C. V. (Jr.), 2004. Terrain elevation mapping results from airborne spotlight-mode coherent cross-track SAR stereo. IEEE Trans. Geosci. Remote Sens. vol. 42, no. 2, pp. 301–308. DOI: https://doi.org/10.1109/TGRS.2003.817683

30. ZEBKER, H. A. and GOLDSTEIN, R M., 1986. Topographic mapping from interferometric SAR observations. J. Geophys. Res. vol. 91, no. B5, pp. 4993–4999. DOI: https://doi.org/10.1029/JB091iB05p04993

31. BAMLER, R. and HARTL, P., 1998. Synthetic aperture radar interferometry. Inverse Probl. vol. 14, no. 4, pp. R1–R54. DOI: https://doi.org/10.1016/j.pss.2011.06.011

32. SHKURATOV, Y., KAYDASH, V., KOROKHIN, V., VELOKODSKY, Y., OPANASENKO, N. and VIDEEN, G., 2011. Optical measurements of the Moon as a tool to study its surface. Planet. Space Sci. vol. 59, is. 13, pp. 1326–1371. DOI: 10.1016/j.pss.2011.06.011

33. CHERTOK, B. E., 2011. Rockets and people. The Moon Race. Vol. IV. Moscow, Russia: Mashinostroyeniye Publ. (in Russian).

34. SHKURATOV, Y., LYTVYNENKO, L., SHULGA, V., YATSKIV, Y., VIDMACHENKO, A. and KISLYUK, V., 2003. Objectives of a prospective Ukrainian orbiter mission to the moon. Adv. Space Res. vol. 31, no. 11, pp. 2341–2345. DOI: https://doi.org/10.1016/S0273-1177(03)00534-9

35. SHKURATOV, Y. G., KISLYUK, V. S., LYTVYNENKO, L. M. and YATSKIV, Y. S., 2004. Model of the Moon 2004 for the “UkrSelene” project. Kosmichna nauka i tekhnologiya. Supplement. vol. 10, no. 2, 51 p. (in Russian) DOI: https://doi.org/10.15407/knit2004.02s.003

36. BONDARENKO, N. V. and SHKURATOV, Y. G., 1998. A map of regolith-layer thickness for the visible lunar hemisphere from radar and optical data. Solar Syst. Res. vol. 32, pp. 264–271.

37. ALIFANOV, O. M., ANFIMOV, N. A., BELYAYEV, V. S., BODIN, B. V., BOYARCHUK, A. A., ZAKHAROV, A. I., ZATSEPIN, V. I., MILYUKOV, V. K., PANASYUK, M. I., POPOVKIN, V. A., PROKHOROV M. Y., KHARTOV, V. V., CHEREPASCHUK, A. M., SHEVCHENKO, V. V. and SHUSTOV, B. M., 2014. Fundamental space research. Book 2: Solar System. Moscow, Russia: Fizmatlit Publ. (in Russian).

38. MCKAY, D., HEIKEN, G., BASU, A., BLANFORD, G., SIMON, S., REEDY, R, FRENCH, B. and PAPIKE, J., 1991. Chapter 7. The Lunar Regolith. In: G. H. HEIKEN, D. T. VANIMAN, and B. M. FRENCH, eds. Lunar source book: A user’s guide to the Moon. New York: Cambridge University Press, pp. 285–356.

39. BASS, F. G. and FUKS, I. M., 1979. Wave scattering from statistically rough surfaces. New York: Pergamon Press.

40. HENYEY, L. C. and GREENSTEIN, J. L., 1941. Diffuse radiation in the Galaxy. Astrophys. J. vol. 93, pp. 70–83. DOI: https://doi.org/10.1086/144246

41. STANKEVICH, D. and SHKURATOV, Y., 2004. Monte Carlo ray-tracing simulation of light scattering in particulate media with optically contrast structure. J. Quant. Spectrosc. Radiat. Transf. vol. 87, is. 3-4, pp. 289–296. DOI: https://doi.org/10.1016/j.jqsrt.2003.12.014

42. SHKURATOV, Y. G., STANKEVICH, D. G., PETROV, D. V., PINET, P. C., CORD, A. M., DAYDOU, Y. H. and CHEVREL, S. D., 2005. Interpreting photometry of regolith-like surfaces with different topographies: shadowing and multiple scatter. Icarus. vol. 173, is. 1, pp. 3–15. DOI: https://doi.org/10.1016/j.icarus.2003.12.017

43. SCOLNIK, M. I., 1989. Radar Handbook. New York: McGraw-Hill Book Company.

44. RUSSIAN FEDERATION STATE STANDARD., 1995. Surfaces of the Moon, Mars, and Venus. Radiophysical Parameters. In: Russian Federation State Standard P 25645.161–94. Moscow: Standard Publ. (in Russian).

45. KINGSLEY, S. and QUEGAN, S., 1999. Understanding Radar Systems. New Jersey: SciTech Publishing, Inc.

46. KONDRATENKOV, G. S. and FROLOV, A. Y., 2005. Radiovision. Radar system of remote sensing of the Earth. Moscow, Russia: Radiotekhnika Publ. (in Russian).

47. ROSEN, P. A., HENSLEY, S., JOUGHIN, I. R, LI, F. K., MADSEN, S. N., RODRIGUEZ, E. and GOLDSTEIN, R. M., 2000. Synthetic aperture radar interferometry. Proc. IEEE. vol. 88, no. 3, pp. 333–382. DOI: 10.1109/5.838084

48. YESEPKINA, N. A., KOROLKOV, D. V. and PARIYSKI, Y. N., 1973. Radio telescopes and radiometers. Moscow, Russia: Nauka Publ. (in Russian).

49. FISCHMAN, M. A., 1999. Sensitivity of a 1.4 GHz Direct-Sampling Digital Radiometer. IEEE Trans. Geosci. Remote Sens. vol. 37, no. 5, pp. 2172–2180. DOI: 10.1109/36.789614

 

 

 


Keywords


satellite radar; synthetic aperture; radiometric mode; Moon’s surface; regolith

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)