PARAMETERS OF INFRASONIC SIGNALS GENERATED IN THE ATMOSPHERE BY MULTIPLE EXPLOSIONS AT AN AMMUNITION DEPOT

DOI: https://doi.org/10.15407/rpra23.04.280

L. F. Chernogor, O. I. Liashchuk, M. B. Shevelev

Abstract


PACS numbers: 93; 96.30.Ys

Purpose: The study lies in investigating the waveforms and the spectral content of the infrasonic signals generated by multiple explosions at an ammunition depot versus energy and distance. The aim of this study is investigating the features of the waveforms, amplitudes, and spectral content of the infrasonic signals which propagated over long distances (~ 150 to 180 km) from the ammunition depot near Vinnytsia (Ukraine) on September 26–27, 2017 during the man-caused catastrophe.

Design/methodology/approach: The Ukrainian network of infrasonic stations was used to study the basic parameters (spectral content, amplitudes, predominant oscillation periods, duration of the oscillation trains, celerity) of the infrasonic waves which propagated over long distances (~ 150 to 180 km). The signal processing technique in this study added up to the following. First, the time dependences of atmospheric pressure fluctuation acquired in relative units were converted into absolute units. Then, they were filtered within the period range of 0.2 to 10 s. Next, the filtered variations were subjected to the system spectral analysis that includes the short-time Fourier transform, the Fourier transform in a sliding window with a width adjusted to be equal to a fixed number of harmonic periods, and the wavelet transform. In the latter transform, the Morlet wavelet was used as the basis function.

Findings: It was shown that an upward trend in the amplitude and period of the predominant oscillation were observed when the energy release increased from 3 to 53 tons of TNT, while the duration of the oscillation trains increased from ≈1.5 to 2 min. The infrasonic signal parameters were determined to change insignificantly when the distance between the explosion epicenter and an infrasonic station location changed a little (by 15 to 18 %). The differences in the wave forms are related to orientation of the propagation path. The analysis has revealed that the harmonics in the 3 to 5-6 s period range were predominant when the energy release was equal to 53 tons of TNT. The duration of the trains of oscillations with such periods amounted to 40 s. The average celerity was calculated to change within 300 to 309 m/s for different propagation paths with stratospheric wave reflections, that provides evidence for the influence of the wind in the upper atmosphere on the infrasound propagation. The thermospheric reflection resulted in the signal amplitude smaller by a factor of a few times and the celerity equal from 245 to 250 m/s.

Conclusions: The basic parameters of infrasonic signals generated during the recurrent explosions at the ammunition depot near Vinnytsia and propagating in the atmosphere have been studied.

Key words: infrasonic signals, multiple explosions, energy release, waveform, signal parameters, spectral content, celerity

Manuscript submitted 24.07.2018

Radio phys. radio astron. 2018, 23(4): 280–293


REFERENCES

1. Le PICHON, A., BLANC, E. and HAUCHECORNE, A., eds., 2010. Infrasound monitoring for atmospheric studies. Dordrecht Heidelberg, London, New York: Springer. DOI: https://doi.org/10.1007/978-1-4020-9508-5

2. GOSSARD, E. E. and HOOKE, W. H., 1975. Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves, Their Generation and Propagation (Developments in Atmospheric Science). Amsterdam: Elsevier Scientific Publ. Co. Ink.

3. MAEDA, K. and YOUNG, J., 1966. Propagation of pressure waves produced by auroras. J. Geomag. Geoelectr. vol. 18, no. 2, pp. 275–299. DOI: https://doi.org/10.5636/jgg.18.275

4. REVELLE, D. O., 1976. On meteor generated infrasound. J. Geophys. Res. vol. 81, is. 7, pp. 1217–1230. DOI: https://doi.org/10.1029/JA081i007p01217

5. BROWN, P., PACK, D., EDWARDS, W. N., REVELLE, D. O., YOO, B. B., SPALDING, R. E. and TAGLIA FERRI, E., 2004. The orbit, atmospheric dynamics, and initial mass of the Park Forest meteorite. Meteorit. Planet.
Sci. vol. 39, is. 11, pp. 1781–1796. DOI: https://doi.org/10.1111/j.1945-5100.2004.tb00075.x

6. ARROWSMITH, S. J., REVELLE, D. O., EDWARDS W. N. and BROWN, P., 2008. Global detection of infrasonic signals from three large bolides. Earth Moon Planets. vol. 10, is. 1–4, pp. 357–363. DOI: https://doi.org/10.1007/s11038-007-9205-z

7. ELGABRY, M. N., KORRAT, I. M., HUSSEIN, H. M. and HAMAMA, I. H., 2017. Infrasound detection of meteors. NRIAG J. Astron. Geophys. vol. 6, is. 1, pp. 68–80. DOI: https://doi.org/10.1016/j.nrjag.2017.04.004

8. BALACHANDRAN, N. K., 1979. Infrasonic signals from thunder. J. Geophys. Res. vol. 84, is. C4, pp. 1735–1745. DOI: https://doi.org/10.1029/JC084iC04p01735

9. GEORGES, T. M., 1973. Infrasound from convective storms: Examining the evidence. Rev. Geophys. Space Phys. vol. 11, is. 3, pp. 571–594. DOI: https://doi.org/10.1029/RG011i003p00571

10. GOERKE, V. H. and WOODWAR, M. W., 1966. Infrasonic observation of a severe weather system. Mon. Weather. Rev. vol. 94, is 6, pp. 395–398. DOI: https://doi.org/10.1175/1520-0493(1966)094<0395:IOOASW>2.3.CO;2

11. DONN, W. L. and BALACHANDRAN, N. K., 1981. Mount St. Helens eruption of 18 May 1980: Air waves and explosive yield. Science. vol. 213, no. 4507, pp. 539–541. DOI: https://doi.org/10.1126/science.213.4507.539

12. GARCÉS, M., IGUCHI, M., ISHIHARA, K., MORRISSEY, M., SUDO, Y. and TSUTSUI, T., 1999. Infrasonic precursors to a Vulcanian eruption at Sakurajima Volcano, Japan. Geophys. Res. Lett. vol. 26, is. 16, pp. 2537–2540. DOI: https://doi.org/10.1029/1998GL005327

13. BOLT, B. A. and TANIMOTO, T., 1981. Atmospheric oscillations after the May 18, 1980, eruption of Mount St. Helens. EOS Trans. AGU. vol. 62, no. 23, pp. 529–530. DOI: https://doi.org/10.1029/EO062i023p00529

14. RIPEPE, M., POGGI, P., BRAUN, T. and GORDEEV, E., 1996. Infrasonic waves and volcanic tremor at Stromboli. Geophys. Res. Lett. vol. 23, is. 2, pp. 181–184. DOI: https://doi.org/10.1029/95GL03662

15. EDMAN, D. A. and SELIN, R., 1981. A note on the Mount St. Helens volcanic eruption. Mon. Weather Rev. vol. 109, is. 5, pp. 1103–1110. DOI: https://doi.org/10.1175/1520-0493(1981)109<1103:ANOTMS>2.0.CO;2

16. BANISTER, J. R., 1984. Pressure wave generated by the Mount St. Helens eruption. J. Geophys. Res. vol. 89, is. D3, pp. 4895–4904. DOI: https://doi.org/10.1029/JD089iD03p04895

17. REED, J. W., 1987. Air pressure waves from Mount St. Helens eruptions. J. Geophys. Res. vol. 92, is. D10, pp. 11979–11992. DOI: https://doi.org/10.1029/JD092iD10p11979

18. Le PICHON, A., HERRY, P., MIALLE, P., VERGOZ, J., BRACHET, N., GARCÉS, M., DROB, D. and CERANN, L., 2005. Infrasound associated with 2004–2005 large Sumatra earthquakes and tsunami. Geophys. Res. Lett. vol. 32, is. 18, id. L19802. DOI: https://doi.org/10.1029/2005GL023893

19. DONN, W. L. and EWING, M., 1962. Atmospheric waves from nuclear explosions – Part II: The Soviet test of 30 October 1961. J. Atmos. Sci. vol. 19, is. 3, pp. 264–273. DOI: https://doi.org/10.1175/1520-0469(1962)019<0264:AWFNEI>2.0.CO;2

20. DONN, W. L. and EWING, M., 1962. Atmospheric waves from nuclear explosions. J. Geophys. Res. vol. 67, is. 5, pp. 1855–1866. DOI: https://doi.org/10.1029/JZ067i005p01855

21. DONN, W. L., SHAW, D. M. and HUBBARD, A. C., 1963. The microbarograph detection of nuclear explosions. IEEE Trans. Nucl. Sci. vol. 10, is. 1, pp. 285–296. DOI: https://doi.org/10.1109/TNS.1963.4323271

22. CHE, I. Y., PARK, J., KIM, I., KIM, T. S. and LEE, H. I., 2014. Infrasound signals from the underground nuclear explosions of North Korea. Geophys. J. Int. vol. 198, is. 1, pp. 495–503. DOI: https://doi.org/10.1093/gji/ggu150

23. BALACHANDRAN, N. K., DONN, W. L. and RIND, D. H., 1977. Concorde sonic booms as an atmospheric probe. Science. vol. 197, no. 4298, pp. 47–49. DOI: https://doi.org/10.1126/science.197.4298.47

24. DONN, W. L., 1978. Exploring the Atmosphere with Sonic Booms: Or How I Learned to Love the Concorde. Am. Sci. vol. 66, is. 6, pp. 724–733.

25. LE PICHON, A., GARCÉS, M., BLANC, E., BARTHÉLÉMY, M. and DROB, D. P., 2002. Acoustic propagation and atmosphere characteristics derived from infrasonic waves generated by the Concorde. J. Acoust. Soc. Am. vol. 111, is. 1, pp. 629–641. DOI: https://doi.org/10.1121/1.1404434

26. EVERS, L. 2005. Infrasound monitoring in the Netherlands. J. Netherlands Acoust. Soc. (Netherlands Akoestisch Genootschap). vol. 176, pp. 1–11.

27. DONN W. L., POSMENTIER, E., FEHR, U. and BALACHANDRAN, N. K., 1968. Infrasound at long range from Saturn V, 1967. Science. vol. 162, no. 3858, pp. 1116–1120. DOI: https://doi.org/10.1126/science.162.3858.1116

28. BALACHANDRAN, N. K. and DONN, W. L., 1971. Characteristics of Infrasonic Signals from Rockets. Geophys. J. Int. vol. 26, is. 1–4, pp. 135–148. DOI: https://doi.org/10.1111/j.1365-246X.1971.tb03387.x

29. OLSON, J., 2012. Infrasound rocket signatures. In: Advanced Maui Optical and Space Surveillance Technologies Conference Proceedings. Maui, Hawaii, September 11-14, 2012. vol. 1, pp. 638–645.

30. SPIVAK, A. A., KISHKINA, S. B., LOKTEV, D. N., RYBNOV, YU. S., SOLOVIEV, S. P. and KHARLAMOV, V. A., 2016. Instruments and techniques for megapolis geophysical monitoring and their application in the Moscow IDG RAS Geophysical Monitoring Center. Seismicheskie Instrumenty. vol. 52, № 2, pp. 65–78. (in Russian).

31. SPIVAK, A. A., LOKTEV, D. N., RYBNOV, YU. S., SOLOVIEV, S. P. and KHARLAMOV, V. A., 2016. Geophysical fields of a megalopolis. Izv. Atmos. Ocean. Phys. vol. 52, is. 8, pp. 841–852. DOI: https://doi.org/10.1134/S0001433816080107

32. ADUSHKIN, V. V., SPIVAK, A. A., SOLOVIEV, S. P., PERNIK, L. M. and KISHKINA, S. B., 2000. Geoecological consequences of large chemical explosions in quarries. Geoekologiya. Inzhenernaya geologiya, gidrogeologiya, geokriologiya. no. 6, pp. 554–563. (in Russian).

33. ADUSHKIN, V. V. and GORELYI, K. I., 2000. Doppler sounding of the ionosphere above Yugoslavia during military operations in Kosovo. Doklady Akademii Nauk. vol. 373, no. 1, pp. 882–884. (in Russian).

34. CHERNOGOR, L. F., 2003. Physical Processes in the Near-Earth Environment Associated with March–April 2003 Iraq War. Space Science and Technology. vol. 9, is. 2/3, pp. 13–33. (in Russian).

35. CHERNOGOR, L. F., 2012. Physics and Ecology of Disasters. Kharkiv: V. N. Karazin Kharkiv National University Publ. (in Russian).

36. CHERNOGOR, L. F., 2004. Geophysical effects and geoecological consequences of mass chemical explosions in military warehouses in the city of Artemovsk. Geofizicheskii Zhurnal. vol. 26, no. 4, pp. 31–44. (in Russian).

37. CHERNOGOR, L. F., 2004. Geophysical effects and environmental consequences of fire and explosions at a military base near the city of Melitopol. Geofizicheskii Zhurnal. vol. 26, no. 6, pp. 61–73. (in Russian).

38. CHERNOGOR, L. F., 2006. Ecological consequences of mass chemical explosions in anthropogenic catastrophe. Geoekologiya. Inzhenernaya geologiya, gidrogeologiya, geokriologiya. no. 6, pp. 522–535. (in Russian).

39. CHERNOGOR, L. F., 2008. Geoecological consequences of the explosion of an ammunition depot. Geoekologiya. Inzhenernaya geologiya, gidrogeologiya, geokriologiya. no. 4, pp. 359–369. (in Russian).

40. CHERNOGOR, L. F., 2017. Space, the Earth, Mankind: Contemporary Challenges. Kharkiv: V. N. Karazin Kharkiv National University Publ. (in Russian).

41. CHERNOGOR, L. F., 2017. A catastrophe on the largest arsenal of ammunition. Nauka i Tekhnologiya. no. 5 (132), pp. 4–10. (in Russian).

42. KULICHKOV, S. N., 1992. Long-range sound propagation in the atmosphere (Review). Rossiiskaia Akademiia Nauk, Izvestiia, Fizika Atmosfery i Okeanavol. vol. 28, no. 4, pp. 339–360. (in Russian).

43. KULICHKOV, S. N., AVILOV, K. V., BUSH, G. A., POPOV, O. E., RASPOPOV, O. M., BARYSHNIKOV, A. K., REVELLE, D. O. and WHITAKER, R. W., 2004. On anomalously fast infrasonic arrivals at long distances from surface explosions. Izvestiya Atmospheric and Oceanic Physics. vol. 40, no. 1, pp. 1–9.

44. TSYBUL’SKAYA, N. D., KULICHKOV, S. N. and CHULICHKOV, A. I., 2012. Studying possibilities for the classification of infrasonic signals from different sources. Izvestiya, Atmospheric and Oceanic Physics. vol. 48, no. 4, pp. 384–390. DOI: https://doi.org/10.1134/S0001433812040147

45. ALPEROVICH, L. S., GOKHBERG, M. B., DROBZHEV, V. I., TROITSKAYA, V. A. and FEDOROVICH, G. V., 1985. Project MASSA – A study of magnetospheric-atmospheric relatoins in seismo-acoustic phenomena. Izvestiya AN SSSR. Fizika Zemli. no. 11, pp. 5–8. (in Russian).

46. ALPEROVICH, L. S., PONOMAREV, E. A. and FEDOROVICH, G. V., 1985. Geophysical phenomena modeling by explosion (Review). Izvestiya AN SSSR. Fizika Zemli. no. 11, pp. 9–20. (in Russian).

47. IZVESTIYA AN SSSR. FIZIKA ZEMLI, 1985. no. 11. (Thematical issue). (in Russian).

48. GOKHBERG, M. B. and SHALIMOV, S. L., 2008. Influence of earthquakes and explosions to ionosphere. Moscow, Russia: Nauka Publ. (in Russian).

49. TARAN, V. I., POD’YACHII, YU. I., SMIRNOV, A. N. and GERSTEIN, L. J., 1985. Disturbances of the ionosphere after a ground level burst on supervision by a method of incoherent scatter. Izvestiya AN SSSR. Fizika Zemli. no. 11, pp. 75–79. (in Russian).

50. BARRY, G. H., GRIFFITHS, L. J. and TAENZER, J. C., 1966. HF radio measurements of high-altitude acoustic waves from a ground-level explosion. J. Geophys. Res. vol. 71, is. 17, pp. 4173–4182. DOI: https://doi.org/10.1029/JZ071i017p04173

51. BLANC, E., 1985. Observations in the upper atmosphere of infrasonic waves from natural or artificial sources: a summary. Ann. Geophys. vol. 3, is. 6, pp. 673–687.

52. BLANC, E. and JACOBSON, A. R., 1989. Observation of ionospheric disturbances following a 5-kt chemical explosion. 2. Prolongated anomalies and stratifications in the lower thermosphere after shock passage. Radio Sci. vol. 24, is. 6, pp. 739–746. DOI: https://doi.org/10.1029/RS024i006p00739

53. BLANC, E. and RICKEL, D., 1989. Nonlinear wave fronts and ionospheric irregularities observed by HF sounding over a powerful acoustic source. Radio Sci. vol. 24, is. 3, pp. 279–288. DOI: https://doi.org/10.1029/RS024i003p00279

54. CALAIS, E., MINSTER, B. J., HOFTON, M. A. and HEDLIN, M. A. H., 1998. Ionospheric signature of surface mine blasts from Global Positioning System measurements. Geophys. J. Int. vol. 132, is. 1, pp. 191–202. DOI: https://doi.org/10.1046/j.1365-246x.1998.00438.x

55. FITZGERALD, T. J., 1997. Observations of total electron content perturbations on GPS signals caused by a ground level explosion. J. Atmos. Sol.-Terr. Phys. vol. 59, is. 7, pp. 829–834. DOI: https://doi.org/10.1016/S1364-6826(96)00105-8

56. GALPERIN, YU. I. and HAYAKAWA, M., 1996. On the magnetospheric effects of experimental ground explosions observed from AUREOL-3. J. Geomagn. Geoelectr. vol. 48, is. 10, pp. 1241–1263. DOI: https://doi.org/10.5636/jgg.48.1241

57. JACOBSON, A. R., CARLOS, R. C. and BLANC, E., 1988. Observation of ionospheric disturbances following a 5 kt chemical explosion. 1. Persistent oscillation in the lower thermosphere after shock passage. Radio Sci. vol. 23, is. 5, pp. 820–830. DOI: https://doi.org/10.1029/RS023i005p00820

58. POKHOTELOV, O., PARROT, M., FEDOROV, E. N., PILIPENKO, V. A., SURKOV, V. V. and GLADYCHEV, V. A., 1995. Response of the ionosphere to natural and manmade acoustic sources. Ann. Geophys. vol. 13, is. 11,
pp. 1197–1210. DOI: https://doi.org/10.1007/s00585-995-1197-2

59. CHERNOGOR, L. F., 2008. Advanced methods of spectral analysis of quasiperiodic wave-like processes in the ionosphere: Specific features and experimental results. Geomagn. Aeron. vol. 48, no. 5, pp. 652–673. DOI:
https://doi.org/10.1134/S0016793208050101

60. EDWARDS, W. N., 2010. Meteor Generated Infrasound: Theory and Observation. In: A. LE PICHON, E. BLANC, and A. HAUCHECORNE, eds. Infrasound Monitoring for Atmospheric Studies. Dordrecht: Springer. pp. 361–414. DOI: https://doi.org/10.1007/978-1-4020-9508-5_12

61. CHERNOGOR, L. F. and, SHEVELEV, N. B., 2018. Parameters of the infrasound signal generated by a meteoroid over Indonesia on October 8, 2009. Kinemat. Phys. Celest. Bodies. vol. 34, no. 3, pp. 147–160. DOI: https://doi.org/10.3103/S0884591318030030


Keywords


infrasonic signals; multiple explosions; energy release; waveform; signal parameters; spectral content; celerity

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)