PROPERTY STUDY OF OJ 287 AND BL LAC VARIABILITY IN OPTICALAND RADIO RANGES

DOI: https://doi.org/10.15407/rpra24.04.254

A. L. Sukharev, M. I. Ryabov, V. V. Bezrukovs

Abstract


PACS number: 98.54.Cm

Purpose: Interrelation and difference in the appearance of quasiperiodic activity of BL-Lac objects OJ 287 and BL Lac is investigated according to optical and radio observations. The aim of the work is to determine and compare the basic quasi-periods of these BL-Lac objects in different light filters of optical range and in radio frequency range (at 15 and 14.5 GHz), as well as brief overview of the results obtained by other authors. Also, the method of comparing optical and radio data in separate bands of close periods was tested. This method will make it possible to better determine the delays between optical and radio data only in the bands of the main quasiperiodic oscillations, which form light curves and screen out noises and irregular variations in the source magnitude and flux.

Design/methodology/approach: The authors used the data of optical observations of OJ 287 in 1978–2018 and of BL Lac in 1970–2018 from the AAVSO (American Association of Variable Star Observers) catalog and from the catalog of a long-term (2008–2018) radio source monitoring at the 40-meter radio telescope, OVRO observatory (Owens Valley Radio Observatory, USA) at 15 GHz, as well as the data from UMRAO observatory (Radio observatory of Michigan University) obtained at 14.5 GHz within 1974–2011. To calculate periodograms and wavelet spectra, a “fast” modification of the Lomb-Scargle method was used, as well as a “fast” method of calculating wavelet spectra via fast Fourier transform with the Morlet analyzing function. Data interpolation has been made by using smoothing cubic splines. To isolate the bands of individual quasi-periods in optical and radio data, Fourier filtering with a Hamming spectral window is used providing the edge effects of about 1 % of time series length.

Findings: Radio source OJ 287 shows good accordance between quasi-periods in optics and radio within 1.1 to 2 years. However, long-term periods in the optical range, close to 12 and 6 years, mentioned in many works, are practically imperceptible in the radio range, against the background of 25-year trend wave. The BL Lac radio source has more differences. In the optical range, a quasi-period of 9 years (about 8 years in the radio one) is observed in the visual light curve. A long wave with the possible period of about 12–13 years, in the optical and radio data is unnoticeable, and the greatest similarity between rapid variability in optical and radio ranges is observed within the periods of 0.6–4 years. Comparison of individual oscillations in close periods for optical and radio data allocated by the Fourier filtering showed their good similarity and perspective in further use of this method in analyzing time delays between these frequency ranges.

Conclusions: Study of variability properties of OJ 287 and BL Lac according to the data of optical and radio observations showed similarities and differences in quasi-periods of their activity, which can be due to the difference of emitting regions in optical and radio ranges. In the optical range, in addition to the jet radiation due to the inverse Compton effect, there exists a contribution from the accretion radiation disk, whose wave processes can give different set of quasi-periods than those observed in the radio range. Therefore, qualitative observations of these radio sources (especially optical) are very important for further construction of models capable of taking into account differences in the processes which form radiation variability in optical and radio ranges.

Key words: BL-Lac objects, bandpass filtering, photometry, periodogram, wavelet analysis

Manuscript submitted  10.05.2019

Radio phys. radio astron. 2019, 24(4): 254-271

REFERENCES

1. TANG, J., ZHANG, H-J. and PANG, Q., 2014. Long term periodicity analysis of OJ 287 at optical V waveband. J. Astrophys. Astron. vol. 35, is. 3, pp. 301–305. DOI: https://doi.org/10.1007/s12036-014-9218-8

2. VALTONEN, M. and CIPRINI, S., 2012. OJ 287 binary black hole system. Mem. S. A. It. vol. 83, p. 219.

3. FAN, J. H., XIE, G. Z., PECONTAL, E., PECONTAL, A. and COPIN, Y., 1998. Historic light curve and long-term optical variation of BL Lacertae 2200+420. Astrophys. J. vol. 507, no. 1, pp. 173–178. DOI: https://doi.org/10.1086/306301

4. WEISTROP, D., 1973. BL Lac: strong short-term variability. Nature Phys. Sci. vol. 241, is. 113, pp. 157–158. DOI: https://doi.org/10.1038/physci241157a0

5. XIE, G. Z., LI, K. H., CHENG, F. Z., HAO, P. J., LI, Z. L., LU, R. W. and LI, G. H., 1990. Search for short variability time-scales of BL Lacertae objects. Astron. Astrophys. vol. 229, no. 2, pp. 329–339.

6. CORBETT, E. A., ROBINSON, A., AXON, D. J., HOUGH, J. H., JEFFRIES, R. D., THURSTON, M. R. and YOUNG, S., 1996. The appearance of broad H alpha in BL Lacertae. Mon. Not. R. Astron. Soc. vol. 281, is. 3, pp. 737–749. DOI: https://doi.org/10.1093/mnras/281.3.737

7. LIU, X., YANG, P. P., LIU, J., LIU, B. R, HU, S. M., KURTANIDZE, O. M., ZOLA, S., KRAUS, A., KRICHBAUM, T. P., SU, R. Z., GAZEAS, K., SADAKANE, K., NILSON, K., REICHART, D. E., KIDGER, M., MATSUMOTO, K., OKANO, S., SIWAK, M., WEBB, J. R., PURSIMO, T., GARCIA, F., NAVES NOGUES, R., ERDEM, A., ALICAVUS, F., BALONEK, T. and JORSTAD, S. G., 2017. Radio and optical intra-day variability observations of five blazars. Mon. Not. R. Astron. Soc. vol. 469, is. 2, pp. 2457–2463. DOI: https://doi.org/10.1093/mnras/stx1062

8. HUGHES, P. A., ALLER, H. D. and ALLER, M. F., 1998. Extraordinary Activity in the BL Lacertae Object OJ 287. Astrophys. J. vol. 503, no. 2, pp. 662–673. DOI: https://doi.org/10.1086/306014

9. TANG, J., 2014. Cross-wavelet analysis of the radio flux of BL Lac object OJ 287. Scientia Sinica Phys. Mech. Astron. vol. 44, is. 8, pp. 865–871. DOI: https://doi.org/10.1360/SSPMA2013-00068

10. GUO, Y. C., HU, S. M., XU, C., LIU, C. Y., CHEN, X., GUO, D. F., MENG, F. Y., XU, M. T. and XU, J. Q., 2015. Long-term optical and radio variability of BL Lacertae. New Astron. vol. 36, pp. 9–18. DOI: https://doi.org/10.1016/j.newast.2014.09.011

11. KELLY, B. C., HUGHES, P. A., ALLER, H. D. and ALLER, M. F., 2003. The Cross-Wavelet Transform and Analysis of Quasi-periodic Behavior in the Pearson-Readhead VLBI Survey Sources. Astrophys. J. vol. 591, is. 2, pp. 695–713. DOI: https://doi.org/10.1086/375511

12. NETZER, H., 2015. Revisiting the Unified Model of Active Galactic Nuclei. Ann. Rev. Astron. Astrophys. vol. 53, pp. 365–408. DOI: https://doi.org/10.1146/annurev-astro-082214-122302

13. GODFREY, L. E. H., LOVELL, J. E. J., BURKE-SPOLAOR, S. D., EKERS, R., BICKNELL, G. V., BIRKINSHAW, M., WORRALL, D. M., JAUNCEY, D. L., SCHWARTZ, D. A., MARSHALL, H. L., GELBORD, J., PERLMAN, E. S. and GEORGANOPOULOS, M., 2012. Periodic structure in the Mpc-scale jet of PKS 0637-752. Astrophys. J. Lett. vol. 758, is. 2, id. L27. DOI: https://doi.org/10.1088/2041-8205/758/2/L27

14. KUDRYAVTSEVA, N. A., BRITZEN, S., WITZEL, A., ROS, E., KAROUZOS, M., ALLER, M. F., ALLER, H. D., TERÄSRANTA, H., ECKART, A. and ZENSUS, A. J., 2010. A possible jet precession in the periodic quasar B0605-085. Astron. Astrophys. vol. 526, id. A51. DOI: https://doi.org/10.1051/0004-6361/201014968

15. MELIANI, Z. and KEPPENS, R., 2007. Transverse stability of relativistic two-component jets. Astron. Astrophys. vol. 475, no. 3, pp. 785–789. DOI:  https://doi.org/10.1051/0004-6361:20078563

16. BICKNELL, G. V. and WAGNER, S. J., 2002. The Evolution of Shocks in Blazar Jets. Publ. Astron. Soc. Aust. vol. 19, is. 1, pp. 129–137. DOI: https://doi.org/10.1071/AS02009

17. TREMAINE, S. and DAVIS, S. W., 2014. Dynamics of warped accretion discs. Mon. Not. R. Astron. Soc. vol. 441, is. 2, pp. 1408–1434. DOI: https://doi.org/10.1093/mnras/stu663

18. AREVALO, P., 2009. Probing the Accretion Disc-Corona Connection in AGN through X-ray and Optical Variability. The Starburst-AGN Connection. In: W. WANG, Z. YANG, Z. LUO, and ZHU CHEN, eds. ASP Conference Series. vol. 408. San Francisco: Astronomical Society of the Pacific, p. 296.

19. MIRONOV, A. V., 2008. Fundamentals of Astrophotometry: Practical Basics of Stellar Photometry and Spectrophotometry. Moscow, Russia: Fizmatlit Publ. (in Russian).

20. BORISOV, A. A., BRUEVICH, E. A., BRUEVICH, V. V., ROZGACHEVA, I. K. and SHIMANOVSKAYA, E. V., 2015. Wavelet-analysis of series of observations of relative sunspot numbers. The dependence of the periods of cyclic activity on the time at different time scales. arXiv:1512. 04098v1[astro-ph.SR]. [online]. [viewed 12 April 2019]. Available from: https://arxiv.org/abs/1512.04098

21. HINICH, M. J., FOSTER, J. and WILD, P., 2009. Discrete Fourier transform filters: cycle extraction and Gibbs effect considerations. Macroecon. Dyn. vol. 13, is. 4, pp. 523–534. DOI: https://doi.org/10.1017/S1365100509080237

22. BREAZ, N., 2004. The cross-validation method in the smoothing spline regression. Acta Univ. Apulensis Math. Inform. vol. 7, pp. 77–84.

23. PIEGL, L. and TILLER, W., 1997. Curve and Surface Fitting. In: The NURBS Book. Monographs in Visual Communications. Berlin, Heidelberg: Springer-Verlag, pp. 361–453. DOI: https://doi.org/10.1007/978-3-642-97385-7_9

24. GUO, Q., XIONG, D.-R., BAI, J.-M., FAN, X.-L. and YI, W.-M., 2017. Optical multi-color monitoring of OJ 287 from 2006 to 2012. Res. Astron. Astrophys. vol. 17, no. 8, id. 82. DOI: https://doi.org/10.1088/1674-4527/17/8/82

25. PIHAJOKI, P., VALTONEN, M. and CIPRINI, S., 2013. Short time-scale periodicity in OJ 287. Mon. Not. R. Astron. Soc. vol. 434, is. 4, pp. 3122–3129. DOI: https://doi.org/10.1093/mnras/stt1233

26. STOTHERS, R. B. and SILLANPÄÄ, A., 1997. Test of Periodicity in the Quasar OJ 287. Astrophys. J. Lett. vol. 475, no. 1, id. L13. DOI: https://doi.org/10.1086/310465

27. BHATTA, G., ZOLA, S., STAWARZ, Ł., OSTROWSKI, M., WINIARSKI, M., OGŁOZA, W., DRÓŻDŻ, M., SIWAK, M., LIAKOS ,A., KOZIEŁ - WIERZBOWSKA, D., GAZEAS, K., DEBSKI, B., KUNDERA, T., STACHOWSKI, G. and PALIYA, V. S., 2016. Detection of possible quasi-periodic oscillations in the long-term optical light curve of the BL Lac object OJ 287. Astrophys. J. vol. 832, no. 1, id. 47. DOI: https://doi.org/10.3847/0004-637X/832/1/47

28. FAN, J.-H., LIU, Y., QIAN, B.-C., TAO, J., SHEN, Z.-Q., ZHANG, J.-S., HUANG, Y. and WANG, J., 2010. Longterm variation time scales in OJ 287. Res. Astron. Astrophys. vol. 10, no. 11, pp. 1100–1108. DOI: https://doi.org/10.1088/1674-4527/10/11/002

29. RYABOV, M. I., SUKHAREV, A. L. and DONSKYKH, H. I., 2016. Catalog of Variability Periods of Extragalactic Radio Sources at Centimeter Wavelengths. Radio Phys. Radio Astron. vol. 21, no. 3, pp. 161–188. (in Russian). DOI: https://doi.org/10.15407/rpra21.03.161

30. SUKHAREV, A. L., RYABOV, M. I. and DONSKYKH, G. I., 2016. Predicting Flux Density Changes of Extragalactic Radio Sources. Astrofizika. vol. 59, no. 2, pp. 245–261. (in Russian). DOI: https://doi.org/10.1007/s10511-016-9428-7

31. POTTER, W. J. and COTTER, G., 2013. Synchrotron and inverse-Compton emission from blazar jets - IV. BL Lac type blazars and the physical basis for the blazar sequence. Mon. Not. R. Astron. Soc. vol. 436, is. 1, pp. 304–314. DOI: https://doi.org/10.1093/mnras/stt1569

32. BRITZEN, S., FENDT, C., WITZEL, G., QIAN, S.-J., PASHCHENKO, I. N., KURTANIDZE, O., ZAJACEK, M., MARTINEZ, G., KARAS, V., ALLER, M., ALLER, H., ECKART, A., NILSSON, K., ARÉVALO, P., CUADRA, J., SUBROWEIT, M. and WITZEL, A., 2018. OJ287: deciphering the ‘Rosetta stone of blazars’. Mon. Not. R. Astron. Soc. vol. 478, is. 3, pp. 3199–3219. DOI: https://doi.org/10.1093/mnras/sty1026

33. GUO, Y. C., HU, S. M., XU, C., LIU, C. Y., CHEN, X., GUO, D. F., MENG, F. Y., XU, M. T. and XU, J. Q., 2015. Long-term optical and radio variability of BL Lacertae. New Astron. vol. 36, pp. 9–18. DOI: https://doi.org/10.1016/j.newast.2014.09.011

34. WIITA, P. J., 1996. Accretion Disk Models for Rapid Variability. Blazar continuum variability. In: H. R. MILLER, J. R. WEBB, and J. C. NOBLE, eds. ASP Conference Series. vol. 110. San Francisco: Astronomical Society of the Pacific, p. 42.



Keywords


BL-Lac objects; bandpass filtering; photometry; periodogram; wavelet analysis

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)