LASER-MICROWAVE SPECTROMETER AND SPECTROSCOPY OF ZINC ATOM IN TRIPLET RYDBERG STATES
Abstract
PACS number: 07.57.Pt
Purpose: Zinc atom in the triplet Rydberg states is the investigation subject. Purposes of the work are the following: design of a laser-microwave spectrometer intended for measuring the transition energies between the Zn I atom triplet Rydberg states, measurements of the two-photon transition frequencies between the triplet n3F3→(n + 1)3F3 states, determination of quantum defect parameters for the mentioned zinc atom transitions on the obtained experimental data basis.
Design/methodology/approach: A beam of neutral thermal atoms of zinc is formed inside the research chamber using the Knudsen furnace and a system of diaphragms. Then, the laser excitation system performs a selective multistep transfer of neutral atoms to the specified Rydberg states, which are initial ones for interaction with microwave radiation. The probing of the studied transitions is carried out by scanning the microwave synthesizer frequency. Microwave absorption of atoms is recorded by the magnitude of the ionization current, which is caused by electric field with exactly specified intensity (the field ionization method). The application of a recording system with a time selection of the desired signal allowed us to increase the spectrometer sensitivity by two orders of magnitude. The widespread use of optoelectronic and transformer isolations has significantly increased the spectrometer noise immunity.
Findings: A laser-microwave spectrometer was created, using which, in the frequency range from 76,000 to 120,000 MHz, the measurements of the frequencies of two-photon transitions between Rydberg triplet states of the Zn I atom were made. Four microwave Rydberg transitions of n3F3→(n + 1)3F3 within the principal quantum number range n from 30 to 34 were reliably dentified. The parameters of a quantum defect in the Ritz formula were obtained on the basis of experimental data analysis.
Conclusions: Frequencies of two-photon F - F transitions between the triplet states with the principal quantum number n = 30–34 were measured. The values of the coefficients for calculating the quantum defect δ0 = 0.0295152(20) and δ2 =-0.0692(12) for the 3F3 terms of zinc were found from the results of the obtained data analysis.
Key words: zinc atom, Rydberg states of atoms, spectrometer, laser excitation, triplet states, microwave range
Manuscript submitted 18.07.2019
Radio phys. radio astron. 2019, 24(4): 272-284
REFERENCES
1. GALLAGHER, T. F., 1994. Rydberg Atoms. New York: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511524530
2. MICHEL, L. and ZHILINSKIÍ, B. I., 2001. Rydberg states of atoms and molecules. Basic group theoretical and topological analysis. Physics Rep. vol. 341, is. 1–6, pp. 173–264. DOI: https://doi.org/10.1016/S0370-1573(00)00090-9
3. LIM, J., LEE, H. and AHN, J., 2013. Review of cold Rydberg atoms and their applications. J. Korean Phys. Soc. vol. 63, is. 4, pp. 867–876. DOI: https://doi.org/10.3938/jkps.63.867
4. WENHUI, L., MOURACHKO, I., NOEL, M. W. and GALLAGHER, T. F., 2003. Millimeter-wave spectroscopy of cold Rb Rydberg atoms in a magneto-optical trap: Quantum defects of the ns, np, and nd series. Phys. Rev. A. vol. 67, is. 5, id. 052502. DOI: https://doi.org/10.1103/PhysRevA.67.052502
5. SNOW, E. L. and LUNDEEN, S. R., 2008. Determination of dipole and quadrupole polarizabilities of Mg+ by fine-structure measurements in high-L n=17 Rydberg states of magnesium. Phys. Rev. A. vol. 77, is. 5, id. 052501. DOI: https://doi.org/10.1103/PhysRevA.77.052501
6. KONOVALENKO, A. A. and SODIN, L. G., 1981. The 26.13 MHz absorption line in the direction of Cassiopeia A. Nature. vol. 294, no. 5837, pp. 135–136. DOI: https://doi.org/10.1038/294135a0
7. GORDON, M. A. and SOROCHENKO, R. L., 2009. Radio Recombination Lines, Their Physics and Astronomical Applications. New York: Springer. DOI: https://doi.org/10.1007/978-0-387-09691-9
8. AHN, J., HUTCHINSON, D. N., RANGAN, C. and BUCKSBAUM, P. H., 2001. Quantum Phase Retrieval of a Rydberg Wave Packet Using a Half-Cycle Pulse. Phys. Rev. Lett. vol. 86, is. 7, pp. 1179–1182. DOI: https://doi.org/10.1103/PhysRevLett.86.1179
9. RAIMOND, J. M., BRUNE, M. and HAROCHE, S., 2001. Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. vol. 73, is. 3, pp. 565–582. DOI: https://doi.org/10.1103/RevModPhys.73.565
10. GLEYZES, S., KUHR, S., GUERLIN, C., BERNU, J., DELÉGLISE, S., HOFF, U. B., BRUNE, M., RAIMOND, J-M. and HAROCHE, S., 2007. Quantum jumps of light recording the birth and death of a photon in a cavity. Nature. vol. 446, is. 7133, pp. 297–300. DOI: https://doi.org/10.1038/nature05589
11. DYUBKO, S. F., EFREMOV, V. A., GERASIMOV, V. G. and MACADAM, K. B., 2004. Millimetre-wave spectroscopy of Au I Rydberg states:S, P and D terms. J. Phys. B: At. Mol. Opt. Phys. vol. 38, is. 8, pp. 1107–1118. DOI: https://doi.org/10.1088/0953-4075/38/8/003
12. MACADAM, K. B., DYUBKO, S. F., EFREMOV, V. A., GERASIMOV, V. G. and PEREPECHAY, M. P., 2009. Microwave spectroscopy of Ag I atoms in Rydberg states: S, P and D terms. J. Phys. B: At. Mol. Opt. Phys. vol. 42, is. 8, id. 085003. DOI: https://doi.org/10.1088/0953-4075/42/8/085003
13. MACADAM, K. B., DYUBKO, S. F., EFREMOV, V. A., GERASIMOV, V. G. and KUTSENKO, A. S., 2009. Laser-microwave spectroscopy of Cu I atoms in S, P, D, F and G Rydberg states. J. Phys. B: At. Mol. Opt. Phys. vol. 42, is. 16, id. 165009. DOI: https://doi.org/10.1088/0953-4075/42/16/165009
14. DYUBKO, S. F., EFREMOV, V. A., GERASIMOV, V. G. and MACADAM, K. B., 2003. Microwave spectroscopy of Al I Rydberg states: F terms. J. Phys. B: At. Mol. Opt. Phys. vol. 36, is. 18, pp. 3797–3804. DOI: https://doi.org/10.1088/0953-4075/36/18/308
15. MACADAM, K. B., DYUBKO, S. F., EFREMOV, V. A., KUTSENKO, A. S. and POGREBNYAK, N. L., 2012. Microwave spectroscopy of singlet Mg I in L = 0–4 Rydberg states. J. Phys. B.: At. Mol. Opt. Phys. vol. 45, is. 21, id. 215002. DOI: https://doi.org/10.1088/0953-4075/45/21/215002
16. LYONS, B. J. and GALLAGHER, T. F., 1998. Mg 3snf–3sng–3snh–3sni intervals and the Mg+ dipole polarizability. Phys. Rev. A. vol. 57, is. 4, pp. 2426–2429. DOI: https://doi.org/10.1103/PhysRevA.57.2426
17. GENTILE, T. R., HUGHEY, B. J. and KLEPPNER, D., 1990. Microwave spectroscopy of calcium Rydberg states. Phys. Rev. A. vol. 42, is. 1, pp. 440–451. DOI: https://doi.org/10.1103/PhysRevA.42.440
18. SHUMAN, E. S., NUNKAEW, J. and GALLAGHER, T. F., 2007. Two-photon microwave spectroscopy of Ba 6snl states. Phys. Rev. A. vol. 75, is. 4, id. 044501. DOI: https://doi.org/10.1103/PhysRevA.75.044501
19. COOKE, W. E. and GALLAGHER, T. F., 1979. Measurements of 1D2→1F3 microwave transitions in strontium Rydberg states using selective resonance ionization. Opt. Lett. vol. 4, is. 6, pp. 173–175. DOI: https://doi.org/10.1364/OL.4.000173
20. MUNTENBRUCH, H., 1960. Die vervollständigung des termschemas von Zn I mit hilfe einer hohlkathodenentladung. Spectrochim. Acta. vol. 16, is. 9, pp. 1040–1053. DOI: https://doi.org/10.1016/0371-1951(60)80144-0
21. BROWN, C. M., TILFORD, S. G. and GINTER, M. L., 1975. Absorption spectra of Zn I and Cd I in the 1300–1750 Å region. J. Opt. Soc. Am. vol. 65, is 12, pp. 1404–1409. DOI: https://doi.org/10.1364/JOSA.65.001404
22. KOMPITSAS, M., BAHARIS, C. and PAN, Z., 1994. Rydberg states of zinc and measurement of the dipole polarizability of the Zn+ ion. J. Opt. Soc. Am. B. vol. 11, is. 5, pp. 697–702. DOI: https://doi.org/10.1364/JOSAB.11.000697
23. NAWAZ, M., NADEEM, A., BHATTI, S. A. and BAIG, M. A., 2006. Two-step laser excitation of 4snd 3D1,2,3 and 4sns 3S1 states from the 4s4p 3P levels in zinc. J. Phys. B: At. Mol. Opt. Phys. vol. 39, is. 4, pp. 871–882. DOI: https://doi.org/10.1088/0953-4075/39/4/011
24. NADEEM, A., NAWAZ, M., BHATTI, S. A. and BAIG, M. A., 2006. Multi-step laser excitation of the highly excited states of zinc. Opt. Commun. vol. 259, is 2, pp. 834–839. DOI: https://doi.org/10.1016/j.optcom.2005.08.075
25. CIVIŠ, S., FERUS, M., CHERNOV, V. E., ZANOZINA, E. M. and JUHA, L., 2014. Zn I spectra in the 1300–6500 cm−1 range. J. Quant. Spectrosc. Radiat. Transf. vol. 134, pp. 64–73. DOI: https://doi.org/10.1016/j.jqsrt.2013.10.017
26. KUTSENKO, A. S., MACADAM, K. B., DYUBKO, S. F. and POGREBNYAK, N. L., 2015. Millimeter-wave spectroscopy of Zn I in 1D2, 1F3 and 1G4 Rydberg states. J. Phys. B: At. Mol. Opt. Phys. vol. 48, is. 24, id. 245005. DOI: https://doi.org/10.1088/0953-4075/48/24/245005
27. DYUBKO, S. F., POGREBNYAK, N. L., ALEKSEEV, E. A., RYABTSEV, I. I. and KUTSENKO, A. S., 2011. Microwave spectometer of Rydberg state atoms. Radio Phys. Radio Astron. vol. 2, no 4, pp. 359–368. DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i4.90
28. CHANNELTRON., [no date]. Electron multiplier handbook for mass spectrometry applications [online]. [viewed 29 August 2019]. Available from: https://www.triumf.ca/sites/default/files/ChannelBookBurle.pdf
29. ALEKSEEV, E. A., MOTIYENKO, R. A. and MARGULES, L., 2012. Millimeter- and submillimeter-wave spectrometers on the basis of direct digital frequency synthesizers. Radio Phys. Radio Astron. vol. 3, no 1, pp. 75–88. DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v3.i1.100
30. NATIONAL INSTITUTE OF STANDARTS AND TECHNOLOGY, 2019. NIST Atomic Spectra Database. Version 5.6 [online]. [viewed 29 August 2019]. Available from: http://physics.nist.gov/asd
31. GOY, P., RAIMOND, J. M., VITRANT, G. and HAROCHE, S., 1982. Millimeter-wave spectroscopy in cesium Rydberg states. Quantum defects, fine- and hyperfine-structure measurements. Phys. Rev. A. vol. 26, is 5, pp. 2733–2742. DOI: https://doi.org/10.1103/PhysRevA.26.2733
32. WIKIPEDIA, 2019. Rydberg constant. [online]. [viewed 5 September 2019]. Available from:https://en.wikipedia.org/wiki/Rydberg_constant
Keywords
Full Text:
PDFCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)