STATISTIC OF SEASONAL AND DIURNAL VARIATIONS OF DOPPLER FREQUENCY SHIFT OF HF SIGNALS AT MID-LATITUDE RADIO PATH

DOI: https://doi.org/10.15407/rpra25.02.118

A. I. Reznychenko, A. V. Koloskov, A. O. Sopin, Y. M. Yampolski

Abstract


Purpose: An experimental study of signatures of traveling ionospheric disturbances (TID) observed in diurnal-seasonal variations of the parameters of probe HF signals propagating on theoblique single-hop RWM–LFO radio path, derived from the yearlong monitoring data.

Design/methodology/approach: A long term digital recording of the HF radio signals’ waveforms of the Exact time and frequency service station (RWM, Moscow, Russia) was made at the Low Frequency Observatory of the IRA NAS–Ukraine (LFO, Martove, Kharkіv reg., Ukraine). The Doppler frequency shift (DFS) was derived from the power spectra of the recorded signals. The DFS quasiperiodic variations were interpreted as the result of passage of traveling ionospheric disturbances associated with the acoustic-gravity waves (AGW) at the height of the F-layer of ionosphere. The value of the DFS variation period was determined as the sum of the time intervals between neighboring zero crossing of two consecutive half-periods, and the amplitude was determined as the range of variations. The cases of F region shielding by the underlying ionospheric layers Es and E were taken into account as well.

Findings: The data on the periods and amplitudes of the DFS variations were used for statistical analysis. The probability of DFS variations’ observation was determined for each month. This value lies within 81 to 91 % in winter and spring and decreases to within 52 to 80 % in summer and autumn seasons. It is shown that the rise of electron density in the lower layers of the ionosphere Es and E makes it difficult to detect TIDs in the F region. This results in a significant underestimation of the probability of observation in the summer and partially in the spring-autumn seasons. The diurnal-seasonal dependences of the probability of DFS observation, as well as their periods and amplitudes were determined. The forms of daily distributions of both amplitude and period are generally similar for all the seasons. They show two peaks, one in the morning and the second one in the evening, and the minimum in the afternoon. As respects the seasonal distributions of periods and amplitudes, in summer, a higher median value of period and more even distribution of amplitude are observed. In addition, we evaluated the influence of the level of geomagnetic storminess on the characteristics of DFS variations. It was determined that a rise of geomagnetic activity (K-index ≥2) is accompanied by decreasing of the observation probability and increasing of the amplitudes and periods of DFS variations.

Conclusions: The techniques developed for the analysis of the data of Doppler ionospheric sounding by non-special type HF signals can be used for diagnostics and analysis of the ionospheric disturbances.

Key words: traveling ionospheric disturbances, quasiperiodic variations, Doppler frequency shift, radio path, period, amplitude, probability of detection

Manuscript submitted  11.12.2019

Radio phys. radio astron. 2020, 25(2): 118-135

REFERENCES

1. GOSSARD, E. and HOOKE, W., 1978. Waves in the atmosphere. Moscow, Russia: Mir Publ. (in Russian).

2. HOOKE, W. H., 1968. Ionospheric irregularities produced by internal atmospheric gravity waves. J. Atmos. Terr. Phys. vol. 30, is. 5, pp. 795–823. DOI: https://doi.org/10.1016/S0021-9169(68)80033-9

3. NARAYANAN, V. L., SHIOKAWA, K., OTSUKA, Y. and NEUDEGG, D., 2018 On the Role of Thermospheric Winds and Sporadic E Layers in the Formation and Evolution of Electrified MSTIDs in Geomagnetic Conjugate Regions. J. Geophys. Res. Space Phys. vol. 123, is. 8, pp. 6957–6980. DOI: https://doi.org/10.1029/2018JA025261

4. MAKELA, J. J. and OTSUKA, Y., 2012. Overview of Nighttime Ionospheric Instabilities at Low- and Mid-Latitudes: Coupling Aspects Resulting in Structuring at the Mesoscale. Space Sci. Rev. vol. 168, is. 1-4, pp. 419–440. DOI: https://doi.org/10.1007/s11214-011-9816-6

5. DULY, T. M., HUBA J. D. and MAKELA, J. J., 2014. Self-consistent generation of MSTIDs within the SAMI3 numerical model. J. Geophys. Res. Space Phys. vol. 119, no. 8, pp. 6745–6757. DOI: https://doi.org/10.1002/2014JA020146

6. AFRAIMOVICH, E. L., EDEMSKIY, I. K., LEONOVICH, A. S., LEONOVICH, L. A., VOEYKOV, S. V. and YASYUKEVICH, Y. V., 2009. MHD nature of night-time MSTIDs excited by solar terminator. Geophys. Res. Lett. vol. 36, is. 15, id. L15106. DOI: https://doi.org/10.1029/2009GL039803

7. MACDOUGALL, J. W. and JAYACHANDRAN, P. T., 2011. Solar terminator and auroral sources for traveling ionospheric disturbances in the midlatitude F region. J. Atmos. Sol. Terr. Phys. vol. 73, is. 17-18, pp. 2437–2443. DOI: https://doi.org/10.1016/j.jastp.2011.10.009

8. MATSUMURA, M., SAITO, A., IYEMORI, T., SHINAGAWA, H., TSUGAWA, T., OTSUKA, Y., NISHIOKA, M. and CHEN, C. H., 2011. Numerical simulations of atmospheric waves excited by the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planet Space. vol. 63, is. 7, pp. 885–889. DOI: https://doi.org/10.5047/eps.2011.07.015

9. HAO, Y.-Q., XIAO, Z. and ZHANG, D.-H., 2006. Responses of the ionosphere to the great Sumatra earthquake and volcanic eruption of Pinatubo. Chin. Phys. Lett. vol. 23, is. 7, pp. 1955–1957. DOI: https://doi.org/10.1088/0256-307X/23/7/082

10. HINES, C. O., 1967. On the nature of travelling ionospheric disturbances launched by low‐altitude nuclear explosions. J. Geophys. Res. vol. 72, is. 7, pp. 1877–1882. DOI: https://doi.org/10.1029/JZ072i007p01877

11. LIN, C. C. H., SHEN, M.‐H., CHOU, M.‐Y., CHEN, C.‐H., YUE, J., CHEN, P.‐C. and MATSUMURA, M., 2017. Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophys. Res. Lett. vol. 44, is. 15, pp. 7578–7586. DOI: https://doi.org/10.1002/2017GL074192

12. LIU, H., DING, F., YUE, X., ZHAO, B., SONG, Q., WAN, W., NING, B. and ZHANG, K., 2018. Depletion and Traveling Ionospheric Disturbances Generated by Two Launches of China's Long March 4B Rocket. J. Geophys. Res. Space Phys. vol. 123, is. 12, pp. 10319–10330. DOI: https://doi.org/10.1029/2018JA026096

13. HUANG, Y.-N, CHENG, K. and CHEN, S.-W., 1985. On the detection of acoustic-gravity waves generated by typhoon by use of real time HF Doppler frequency shift sounding system. Radio Sci. vol. 20, is. 4, pp. 897–906. DOI: https://doi.org/10.1029/RS020i004p00897

14. GARCIA, R. F., DOORNBOS, E., BRUINSMA, S. and HEBERT, H., 2014. Atmospheric gravity waves due to the Tohoku‐Oki tsunami observed in the thermosphere by GOCE. J. Geophys. Res. Atmos. vol. 119, is. 8, pp. 4498–4506. DOI: https://doi.org/10.1002/2013JD021120

15. FRITTS, D. C. and ALEXANDER, M. J., 2003. Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys. vol. 41, is. 1, id. 1003. DOI: https://doi.org/10.1029/2001RG000106

16. LAŠTOVIČKA, J., 2006. Forcing of the ionosphere by waves from below. J. Atmos. Sol.-Terr. Phys. vol. 68, is. 3-5, pp. 479–497. DOI: https://doi.org/10.1016/j.jastp.2005.01.018

17. HOCKE, K. and SCHLEGEL, K., 1996. A review of atmospheric gravity waves and travelling ionospheric disturbances: 1982–1995. Ann. Geophys. vol. 14, 1s. 9, pp. 917–940. DOI: https://doi.org/10.1007/s00585-996-0917-6

18. HARGREAVES, J. K., 1979. The Upper Atmosphere and Solar-terrestrial Relations: An Introduction to the Aerospace Environment. New York: Van Nostrand Reinhold.

19. WALDOCK, J. A. and JONES, T. B., 1986. HF Doppler observations of medium-scale travelling ionospheric disturbances at mid-latitudes. J. Atmos. Terr. Phys. vol. 48, is. 3, pp. 245–260. DOI: https://doi.org/10.1016/0021-9169(86)90099-1

20. OINATS, A.V., NISHITANI, N., PONOMARENKO, P., BERNGARDT, O. I. and RATOVSKY, K. G., 2016. Statistical characteristics of medium-scale traveling ionospheric disturbances revealed from the Hokkaido East and Ekaterinburg HF radar data. Earth Planet Space. vol. 68, is. 1, id. 8. DOI: https://doi.org/10.1186/s40623-016-0390-8

21. BOWMAN, G. G., 1990. A review of some recent work on mid-latitude spread-F occurrence as detected by ionosondes. J. Geomagn. Geoelect. vol. 42, is. 2, pp. 109–138. DOI: https://doi.org/10.5636/jgg.42.109

22. PAZNUKHOV, V. V., GALUSHKO, V. G. and REINISCH, B. W., 2012. Digisonde observations of TIDs with frequency and angular sounding technique. Adv. Space Res. vol. 49, is. 4, pp. 700–710. DOI: https://doi.org/10.1016/j.asr.2011.11.012

23. BARABASH, V. V., PANASENKO, S. V., AKSONOVA, K. D. and LISACHENKO, V. N., 2017. Characteristics of moving ionospheric disturbances over Ukraine and West Antarctica during the strong geospace storm according to data of vertical sounding and incoherent scattering. Ukrainian Antarctic Journal [online]. no. 16, pp. 113–122. (in Ukrainian). DOI: https://doi.org/10.33275/1727-7485.16.2017.69 [viewed 27 March 2020]. Available from: http://uaj.uac.gov.ua/index.php/uaj/article/download/69/33/

24. WILLIAMS, P. J. S., 1989. Observations of Atmospheric Gravity Waves with Incoherent Scatter Radar. Adv. Space Res. vol. 9, is. 5, pp. 65–72. DOI: https://doi.org/10.1016/0273-1177(89)90342-6

25. PANASENKO, S.V., GONCHARENKO, L. P., ERICKSON, P. J., AKSONOVA, K. D. and DOMNIN, I. F., 2018. Traveling ionospheric disturbances observed by Kharkiv and Millstone Hill incoherent scatter radars near vernal equinox and summer solstice. J. Atmos. Sol.-Terr. Phys. vol. 172, pp. 10–23. DOI: https://doi.org/10.1016/j.jastp.2018.03.001

26. JONAH, O. F., PANASENKO S. V., AKSONOVA K. D., GONCHARENKO L. P., and COSTER A., 2018 Observations of traveling ionospheric disturbances at midlatitudes during geomagnetic storm of 1–3 September 2016. In: AGU Fall Meeting Abstracts. Washington D.C., USA, December 10-14, 2018. id. SA33C-3491. DOI: 10.13140/RG.2.2.23123.84003

27. CHERNOGOR, L. F., PANASENKO. S. V., FROLOV. V. L. and DOMNIN, I. F., 2015. Observations of the Ionospheric Wave Disturbances Using the Kharkov Incoherent Scatter Radar upon RF Heating of the Near-Earth Plasma. Radiophys. Quantum Electron. vol. 58, is. 2, pp. 79–91. DOI: https://doi.org/10.1007/s11141-015-9583-4

28. MORTON, F. W. and ESSEX, E. A., 1978. Gravity wave observations at a southern hemisphere mid-latitude station using the total electron content technique. J. Atmos. Terr. Phys. vol. 40, is. 10-11, pp. 1113–1122. DOI: https://doi.org/10.1016/0021-9169(78)90059-4

29. AFRAIMOVICH, E. L., KOSOGOROV, E. A., LESYUTA, O. S., USHAKOV, I. I. and YAKOVETS, A. F., 2001. Geomagnetic Control of the Spectrum of Traveling Ionospheric Disturbances Based on Data from a Global GPS Network. Ann. Geophys. vol. 19, is. 7, pp. 723–731. DOI: https://doi.org/10.5194/angeo-19-723-2001

30. CHEN, G., ZHOU, C., LIU, Y., ZHAO, J., TANG, Q., WANG, X. and, ZHAO, Z., 2019. A statistical analysis of medium-scale traveling ionospheric disturbances during 2014–2017 using the Hong Kong CORS network. Earth Planet Space. vol. 71, id. 52. DOI: https://doi.org/10.1186/s40623-019-1031-9

31. SHIOKAWA, K., IHARA, C., OTSUKA, Y. and OGAWA, T., 2003. Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images. J. Geophys. Res. Space Phys. vol. 108, is. A1, id. 1052. DOI: https://doi.org/10.1029/2002JA009491

32. HUANG, F., DOU, X., LEI, J., LIN, J., DING, F. and ZHONG, J., 2016. Statistical analysis of nighttime medium-scale traveling ionospheric disturbances using airglow images and GPS observations over central China. J. Geophys. Res. Space. Phys. vol. 121, is. 9, pp. 8887–8899. DOI: https://doi.org/10.1002/2016JA022760

33. DOMNIN, I. F., CHEPURNYY, Y. M., EMELYANOV, L. Y., CHERNYAEV, S. V., KONONENKO, A. F., KOTOV, D. V., BOGOMAZ O. V. and ISKRA, D. A., 2014. Kharkiv incoherent scatter facility. Bulletin of the National Technical University “Kharkiv Polytechnic Institute”. Series: Radiophysics and Ionosphere [online]. no. 47(1089), pp 28–42. [viewed 19 March 2020]. Available from: https://www.researchgate.net/publication/299535724_Kharkiv_incoherent_scatter_facility

34. ZALIZOVSKI, A. V., KASHCHEIEV, A. S., KASHCHEIEV, S. B., KOLOSKOV, A. V., LISACHENKO, V. N., PAZNUKHOV, V. V., PIKULIK, I., SOPIN, A. A. and YAMPOLSKI, Y. M., 2018. A prototype of a portable coherent ionosonde. Space Sci. Technol. vol. 24, no. 3, pp. 10–22. (in Russian). DOI: https://doi.org/10.15407/knit2018.03.010

35. ZALIZOVSKI, A., YAMPOLSKI, Y., MISHIN, E., KOLOSKOV, A., PAZNUKHOV, V., KASHCHEYEV, S., SOPIN, A., AKSONOVA K. and ZANIMONSKY, E., 2019. AGW/TID over the Antarctic Peninsula and Eastern Europe as observerd by multiposition HF doppler and GNSS-TEC techniques. In: CEDAR-2019 Workshop. [online]. Santa Fe, NM, USA, 16-21 June 2019 [viewed 19 March 2020]. Available from: https://www.researchgate.net/publication/334230940

36. GALUSHKO, V. G., PAZNUKHOV, V. V., SOPIN, A. A. and YAMPOLSKI, Y. M., 2016. Statistics of ionospheric disturbances over the Antarctic Peninsula as derived from TEC measurements. J. Geophys. Res. Space Phys. vol. 121, is. 4, pp. 3395–3409. DOI: https://doi.org/10.1002/2015JA022302

37. NYKIEL, G., ZANIMONSKIY, Y. M., YAMPOLSKI, Y. M. and FIGURSKI, M., 2017. Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations. Sensors. vol. 17, is. 10, id. 2298. DOI: https://doi.org/10.3390/s17102298

38. GALUSHKO, V. G., 1997. Frequency-and-Angular Sounding of the Iionosphere. Telecomm. Radio Eng. vol. 51, is. 6-7, pp. 1–6. DOI: https://doi.org/10.1615/TelecomRadEng.v51.i6-7.10

39. GALUSHKO, V. G., KASCHEEV, A. S., PAZNUKHOV, V. V., YAMPOLSKI, Y. M. and REINISCH, B. W., 2008. Frequency-and-angular sounding of traveling ionospheric disturbances in the model of three-dimensional electron density waves. Radio Sci. vol. 43, is. 4, id. RS4013. DOI: https://doi.org/10.1029/2007RS003735

40. BELEY, V. S., GALUSHKO, V. G. and YAMPOLSKI, Y. M., 1995. Traveling ionospheric disturbance diagnostics using HF signal trajectory parameter variations. Radio Sci.vol. 30, is. 6, pp. 1739–1752. DOI: https://doi.org/10.1029/95RS01992

41. PIKULIK, I. I, KASHCHEYEV, S. B., GALUSHKO, V. G. and YAMPOLSKY, YU. M., 2003. HF-receiver Equipment for Frequency-and-Angular Sounding of the Ionosphere in Antarctica. Ukrainian Antarctic journal [online]. no. 1, pp. 61–69. (in Russian). [viewed 27 March 2020]. Available from: http://dspace.nbuv.gov.ua/bitstream/handle/123456789/128125/08-Pikulin.pdf

42. GALUSHKO, V. G., KASHCHEYEV, A. S., KASHCHEYEV, S. B., KOLOSKOV, A. V., PIKULIK, I. I., YAMPOLSKI, Y. M., LITVINOV, V. A., MILINEVSKY, G. P. and RAKUSA-SUSZCZEWSKI, S., 2007. Bistatic HF diagnostics of TIDs over the Antarctic Peninsula. J. Atmos. Sol.-Terr. Phys. vol. 69, is. 4-5, pp. 403–410. DOI: https://doi.org/10.1016/j.jastp.2006.05.010

43. BELYEY, V. S., GALUSHKO, V. G., PAZNUKHOV, D., REINISCH, B. W. and YAMPOLSKY, Y. M., 2000. HF Radar Sounding of TIDs with the Use of the DPS System and Signals from Broadcasting Stations. In: Progress in Electromagnetics Research Symposium PIERS-2000 Proceedings. Cambridge, MA, USA, July 5-14, 2000. p. 602.

44. GALUSHKO, V. G., BELEY, V. S., KOLOSKOV, A. V., YAMPOLSKI, Y. M., PAZNUKHOV, V. V., REINISCH, B. W., FOSTER, J. C. and ERICKSON, P., 2003. Frequency-and-angular HF sounding and ISR diagnostics of TIDs. Radio Sci. vol. 38, is. 6, id. 1102. DOI: https://doi.org/10.1029/2002RS002861

45. REINISCH, B., GALKIN, I., BELEHAKI, A., PAZNUKHOV, V., HUANG, X., ALTADILL, D., BURESOVA, D., MIELICH, J., VERHULST, T., STANKOV, S., BLANCH, E., KOUBA, D., HAMEL, R., KOZLOV, A., TSAGOURI, I., MOUZAKIS, A., MESSEROTTI, M., PARKINSON, M. and ISHII, M., 2018. Pilot Ionosonde Network for Identification of Traveling Ionospheric Disturbances. Radio Sci. vol. 53, is. 3, pp. 365–378. DOI: https://doi.org/10.1002/2017RS006263

46. KOLOSKOV, A. V., YAMPOLSKI, Y. M., ZALIZOVSKI, A. V., GALUSHKO, V. G., KASCHEEV, A. S., LA HOZ, C., BREKKE, A., BELEY, V. S. and RIETVELD, M. T., 2014. Network of internet-controlled HF receivers for ionospheric researches. Radio Pphys. Radio Astron. vol. 19, no. 4, pp. 324–335. (in Russian). DOI: https://doi.org/10.15407/rpra19.04.324

47. CHERENKOV, G. T., ed. 1979. Standard frequency and time signals. Characteristics and schedule of transmittings through radio stations, television and sound broadcast network. The Bulletin. Moscow, USSR: Standards Publishing House. (in Russian).

48. PUSHKOV INSTITUTE OF TERRESTRIAL MAGNETISM, IONOSPHERE AND RADIO WAVE PROPAGATION RUSSIAN ACADEMY OF SCIENCES, 2020. PARUS-A Archive [online]. [viewed 27 March 2020]. Available from: https://www.izmiran.ru/ionosphere/moscow/text/

49. SOMSIKOV, V. M., 1983. Solar terminator and dynamic of the atmosphere. Alma-Ata, Kazakhstan: Nauka Publ. (in Russian).

50. FRIEDMAN, V., 1994. A zero crossing algorithm for the estimation of the frequency of a single sinusoid in white noise. IEEE Trans. Signal Process. vol. 42, is. 6, pp. 1565–1569. DOI: https://doi.org/10.1109/78.286978

51. REZNYCHENKO, A. I., KOLOSKOV, A. V. and YAMPOLSKI, Y. M., 2018. Monitoring of regular and sporadic ionospheric variations on the single-hop HF radio paths. Radio Phys. Radio Astron. vol. 23, no. 4, pp. 266–279. (in Russian). DOI: https://doi.org/10.15407/rpra23.04.266

52. MEDVEDEV, A. V., RATOVSKY, K. G., TOLSTIKOV, M. V., OINATS, A. V., ALSATKIN, S. S. and ZHEREBTSOV, G. A., 2017. Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere. J. Geophys. Res. Space Phys. vol. 122, is. 7, pp. 7567–7580. DOI: https://doi.org/10.1002/2017JA024103

53. OLIVER, W. L., OTSUKA, Y., SATO M., TAKAMI, T. and FUKAO, S., 1997. A climatology of F region gravity wave propagation over the middle and upper atmosphere radar. J. Geophys. Res. Space Phys. vol. 102, is. A7, pp. 14499–14512. DOI: https://doi.org/10.1029/97JA00491

54. LIZUNOV, G. V. and LEONTIEV, A. YU., 2014. Height of the penetration into the ionosphere for internal atmosphere gravity waves. Space Sci. Technol. vol. 20, no. 4, pp. 31–41. (in Russian). DOI: https://doi.org/10.15407/knit2014.04.031

55. BOŠKA, J., ŠAULI, P., ALTADILL, D., SOLÉ, J. G. and ALBERCA, L. F., 2003. Diurnal Variation of Gravity Wave Activity at Midlatitudes in the Ionospheric F region. Stud. Geophys. Geod. vol. 47, is. 3, pp. 579–586. DOI: https://doi.org/10.1023/A:1024763618505

56. KOTAKE, N., OTSUKA, Y., OGAWA, T., TSUGAWA, T. and SAITO, A., 2007. Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California. Earth Planet Space. vol. 59, is. 2, pp. 95–102. DOI: https://doi.org/10.1186/BF03352681

57. DEPARTMENT OF RADIOPHYSICS OF GEOSPACE, INSTITUTE OF RADIO ASTRONOMY OF THE NATIONAL ACADEMY OF SCIENCES OF UKRAINE, 2018. K-Indexes of geomagnetic activity [online]. [viewed 27 March 2020]. Available from: http://geospace.com.ua/data/metmag_ki.php


Keywords


traveling ionospheric disturbances; quasiperiodic variations; Doppler frequency shift; radio path; period; amplitude; probability of detection

Full Text:

PDF


Creative Commons License

Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0) .