CREATION AND APPROBATION OF A LOW-FREQUENCY RADIO ASTRONOMY ANTENNA FOR STUDIES OF OBJECTS OF THE UNIVERSE FROM THE MOON'S FARSIDE

DOI: https://doi.org/10.15407/rpra26.03.197

I. N. Bubnov, O. O. Konovalenko, P. L. Tokarsky, O. M. Korolev, S. M. Yerin, L. O. Stanislavsky

Abstract


Purpose: Theoretical and experimental studies of the active antenna – an element of the low-frequency radio telescope antenna array for the future observatory on the farside of the Moon.

Design/methodology/approach: To study the active antenna, consisting of a complex-shaped dipole and a low-noise amplifier, we used its mathematical model in the form of a two-port network, whose electrical parameters are set by the scattering matrix, the noise parameters being set by the covariance matrix of the spectral densities of noise waves. This model allows ma[1]king the correct analysis of the signal-to-noise ratio at the active antenna output with account for the external and internal noise sources. The modelling results were compared with those of experimental measurements of antenna characteristics. A series of radio astronomy observations were made with the developed antenna under the Earth environmental conditions.

Findings: A numerical analysis of the radio telescope active antenna parameters has been made in a wide frequency range of 4–40 MHz. Two versions of the low-noise amplifier were developed to operate in the active antenna under the space and Earth environmental conditions. Under the Earth conditions, it has been experimentally proven that the range of problems, which such radio telescopes can effectively solve at low frequencies, is quite wide – from the solar research to the search for cosmological effects.

Conclusions: The results of numerical simulations and experimental measurements obtained in this work have shown a satisfactory agreement between them for the most of the frequency range. The results of this work can be useful in the research and development of active antennas designed for operation at the decameter and hectometer wavelength ranges, particularly those intended for using under the space environmental conditions.

Keywords: active antenna, Moon, radio astronomy observations, sensitivity

Manuscript submitted 24.05.2021

Radio phys. radio astron. 2021, 26(3): 197-210

REFERENCES

1. SHKURATOV, Y. G., KONOVALENKO, A. A., ZAKHARENKO, V. V., STANISLAVSKY, A. A., BANNIKOVA, E. Y., KAYDASH, V. G., STANKEVICH, D. G., KOROKHIN, V. V., VAVRIV, D. M., GALUSHKO, V. G., YERIN, S. N., BUBNOV, I. N., TOKARSKY, P. L., ULYANOV, O. M., STEPKIN, S. V., LYTVYNENKO, L. N., YATSKIV, Y. S., VIDEEN, G., ZARKA, P. and RUCKER, H. O., 2019. A twofold mission to the moon: Objectives and payloads. Acta Astronautica. vol. 154, pp. 214–226. DOI: https://doi.org/10.1016/j.actaastro.2018.03.038

2. SHKURATOV, YU. G., KONOVALENKO, A. A., ZAKHARENKO, V. V., STANISLAVSKY, A. A., BANNIKOVA, E. Y., KAYDASH, V. G., STANKEVICH, D. G., KOROKHIN, V. V., VAVRIV, D. M., GALUSHKO, V. G., YERIN, S. N., BUBNOV, I. N., TOKARSKY, P. L., ULYANOV, O. M., STEPKIN, S. V., LYTVYNENKO, L. M., YATSKIV, YA. S., VIDEEN, G., ZARKA, P. and RUCKER, H. O., 2018. Ukrainian Mission to the Moon: how to and with what. Space Sci. Technol. vol. 24, no. 1, pp. 3–30. (in Ukrainian). DOI: https://doi.org/10.15407/knit2018.01.003

3. JESTER, S. and FALCKE, H., 2009. Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets. New Astron. Rev. vol. 53, is. 1-2, pp. 1–26. DOI: https://doi.org/10.1016/j.newar.2009.02.001

4. MIMOUN, D., WIECZOREK, M. A., ALKALAI, L., BANERDT, W. B., BARATOUX, D., BOUGERET, J.-L., BOULEY, S., CECCONI, B., FALCKE, H., FLOHRER, J., GARCIA, R. F., GRIMM, R., GROTT, M., GURVITS, L., JAUMANN, R., JOHNSON, C. L., KNAPMEYER, M., KOBAYASHI, N., KONOVALENKO, A., LAWRENCE, D., LE FEUVRE, M., LOGNONNÉ, P., NEAL, C., OBERST, J., OLSEN, N., RÖTTGERING, H., SPOHN, T., VENNERSTROM, S., WOAN, G. and ZARKA, P., 2012. Farside explorer: unique science from a mission to the farside of the Moon. Exp. Astron. vol. 33, is. 2-3, pp. 529–585. DOI: https://doi.org/10.1007/s10686-011-9252-3

5. ZARKA, P., BOUGERET, J.-L., BRIAND, C., CECCO[1]NI, B., FALCKE, H., GIRARD, J., GRIEßMEIER, J.-M., HESS, S., KLEIN-WOLT, M., KONOVALENKO, A., LAMY, L., MIMOUN, D. and AMINAEI, A., 2012. Planetary and exoplanetary low frequency radio observations from the Moon. Planet. Space Sci. vol. 74, is. 1, pp. 156–166. DOI: https://doi.org/10.1016/j.pss.2012.08.004

6. STANISLAVSKY, A. A., KONOVALENKO, A. A., YERIN, S. N., BUBNOV, I. N., ZAKHARENKO, V. V., SHKURATOV, YU. G., TOKARSKY, P. L., YATSKIV, YA. S., BRAZHENKO, A. I., FRANTSUZENKO, A. V., DOROVSKYY, V. V., RUCKER, H. O. and ZARKA, P., 2018. Solar bursts as can be observed from the lunar farside with a single antenna at very low frequencies. Astron. Nachr. vol. 339, is. 7-8, pp. 559–570. DOI: https://doi.org/10.1002/asna.201813522

7. KONOVALENKO, A., SODIN, L., ZAKHARENKO, V., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., TOKARSKY, P., MELNIK, V., KALINICHENKO, N., STANISLAVSKY, A., KOLIADIN, V., SHEPELEV, V., DOROVSKYY, V., RYABOV, V., KOVAL, A., BUBNOV, I., YERIN, S., GRIDIN, A., KULISHENKO, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., REZNIK, A., KVASOV, G., MUKHA, D., LITVINENKO, G., KHRISTENKO, A., SHEVCHENKO, V. V., SHEVCHENKO, V. A., BELOV, A., RUDA[1]VIN, E., VASYLIEVA, I., MIROSHNICHENKO, A., VASILENKO, N., OLYAK, M., MYLOSTNA, K., SKO[1]RYK, A., SHEVTSOVA, A., PLAKHOV, M., KRAVTSOV, I., VOLVACH, Y., LYTVINENKO, O., SHEV[1]CHUK, N., ZHOUK, I., BOVKUN, V., ANTONOV, A., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHIN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A., GRIEßMEIER, J.-M., TAGGER, M., GIRARD, J., CHARRIER, D., BRIAND, C. and MANN, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron. vol. 42, is. 1, pp. 11–48. DOI: https://doi.org/10.1007/s10686-016-9498-x

8. KONOVALENKO, A. A., FALKOVICH, I. S., KALINICHENKO, N. N., GRIDIN, A. A., BUBNOV I. N., LECACHEUX, A., ROSOLEN, C. and RUCKER, H. O., 2003. Thirty-Element Active Antenna Array as a Prototype of a Huge Low-Frequency Radio Telescope. Exp. Astron. vol. 16, is. 3, pp. 149–164. DOI: https://doi.org/10.1007/s10686-003-0030-8

9. FALKOVICH, I. S., KONOVALENKO, A. A., GRIDIN, A. A., SODIN, L. G., BUBNOV, I. N., KALINICHENKO, N. N.,·RASHKOVSKII, S. L., MUKHA, D. V. and TOKARSKY, P. L., 2011. Wide-band high linearity active dipole for low frequency radio astronomy. Exp. Astron. vol. 32, is. 2, pp. 127–145. DOI: https://doi.org/10.1007/s10686-011-9256-z

10. STANISLAVSKY, A. A., BUBNOV, I. N., KONOVALENKO, A. A., GRIDIN, A. A., SHEVCHENKO, V. V., STANISLAVSKY, L. A., MUKHA, D. V. and KOVAL, A. A., 2014. First radio astronomy examination of the low-frequency broadband active antenna subarray. Adv. Astron. vol. 2014, id. 517058. DOI: https://doi.org/10.1155/2014/517058

11. TOKARSKY, P. L., KONOVALENKO, A. A. and YERIN, S. N., 2017. Sensitivity of an Active Antenna Array Element for the Low-Frequency Radio Telescope GURT. IEEE Trans. Antennas Propag. vol. 65, is. 9, pp. 4636–4644. DOI: https://doi.org/10.1109/TAP.2017.2730238

12. TOKARSKY, P. L., KONOVALENKO, A. A., YERIN, S. N. and BUBNOV, I. N., 2019. An Active Antenna Subarray for the Low-Frequency Radio Telescope GURT – Part I: Design and Theoretical Model. IEEE Trans. Antennas Propag. vol. 67, is. 12, pp. 7304–7311. DOI: https://doi.org/10.1109/TAP.2019.2927841

13. TOKARSKY, P. L., KONOVALENKO, A. A., YERIN, S. N. and BUBNOV, I. N., 2016. Sensitivity of Active Phased Antenna Array Element of GURT Radio Telescope. Radio Phys. Radio Astron. vol. 21, no. 1, pp. 48–57. (in Russian). DOI: https://doi.org/10.15407/rpra21.01.048

14. TOKARSKY, P. L., KONOVALENKO, A. A. and YERIN, S. N., 2015. Analysis of Active Phased Antenna Array Parameters for the GURT Radio Telescope. Radio Phys. Radio Astron. vol. 20, no. 2, pp. 142–153. (in Russian). DOI: https://doi.org/10.15407/rpra20.02.142

15. CANE, H. V., 1979. Spectra of the non-thermal radio radiation from the galactic polar regions. Mon. Not. R. Astron. Soc. vol. 189, is. 3, pp. 465–478. DOI: https://doi.org/10.1093/mnras/189.3.465

16. DULK, G. A., ERICKSON, W. C., MANNING, R. and BOUGERET, J.-L., 2001. Calibration of low-frequency radio telescopes using the galactic background radiation. Astron. Astrophys. vol. 365, no. 2, pp. 294–300. DOI: https://doi.org/10.1051/0004-6361:20000006

17. DURIC, N., THEODOROU, A., SMITH, K., ZOUAOUI, G., HARRIS, M., JUNOR, W. and GAUSSIRAN, T., 2003. RFI report for the U.S. South-West [online]. [viewed 11 July 2021]. Available from ftp://gemini.haystack.edu/pub/lofar/siting_docs/SWUS_RFI.doc

18. KRAUS, J. D., 1966. Radio Astronomy. NewYork: McGraw-Hill.

19. WROBEL, J. M. and WALKER, R. C., 1999. Sensitivity. In: G. B. TAYLOR, C. L. CARILLI, and R. A. PERLEY, eds. Synthesis imaging in radio astronomy II, ASP Conference Series. vol. 180, pp. 171–179.

20. HICKS, B. C., PARAVASTU-DALAL, N., STEWART, K. P., ERICKSON, W. C., RAY, P. S., KASSIM, N. E., BURNS, S., CLARKE, T., SCHMITT, H., CRAIG, J., HARTMAN, J. and WEILER, K. W., 2012. A Wide-Band, Active Antenna System for Long Wavelength Radio Astronomy. Publ. Astron. Soc. Pac. vol. 124, no. 920, pp. 1090–1104. DOI: https://doi.org/10.1086/668121

21. KOROLEV, A. M., 2014. PHEMTs as Circuit Elements for Low-Power-Consumption Receivers/Amplifiers Operating in a Wide Temperature Range Environment. Radio Phys. Radio Astron. vol. 19, no. 2, pp. 181–185. (in Russian). DOI: https://doi.org/10.15407/rpra19.02.181

22. ZAKHARENKO, V., KONOVALENKO, A., ZARKA, P., ULYANOV, O., SIDORCHUK, M., STEPKIN, S., KOLIADIN, V., KALINICHENKO, N., STANISLAVSKY, A., DOROVSKYY, V., SHEPELEV, V., BUBNOV, I., YERIN, S., MELNIK, V., KOVAL, A., SHEVCHUK, N., VASYLIEVA, I., MYLOSTNA, K., SHEVTSOVA, A., SKORYK, A., KRAVTSOV, I., VOLVACH, Y., PLAKHOV, M., VASILENKO, N., VASYLKIVSKYI, Y., VAVRIV, D., VINOGRADOV, V., KOZHIN, R., KRAVTSOV, A., BULAKH, E., KUZIN, A., VASILYEV, A., RYABOV, V., REZNICHENKO, A., BORTSOV, V., LISACHENKO, V., KVASOV, G., MUKHA, D., LITVINENKO, G., BRAZHENKO, A., VASHCHISHIN, R., PYLAEV, O., KOSHOVYY, V., LOZINSKY, A., IVANTYSHYN, O., RUCKER, H. O., PANCHENKO, M., FISCHER, G., LECACHEUX, A., DENIS, L., COFFRE, A. and GRIEßMEIER, J.-M., 2016. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum. vol. 5, is. 4, id. 1641010. DOI: https://doi.org/10.1142/S2251171716410105

23. FOX, K. and TRAN, L., 2020. New Sunspots Potentially Herald Increased Solar Activity [online]. NASA: Space Weather. [viewed 13 July 2021]. Available from: https://www.nasa.gov/feature/goddard/2020/new-sunspots-herald-increased-solar-activity-cycle-sdo

24. SPACEWEATHERLIVE, 2020. Real-time auroral and solar activity [online]. [viewed 13 July 2021]. Available from: https://www.spaceweatherlive.com/en/solar-activity/region/12765

25. ZHELEZNYAKOV, V. V., 1970. Radio Emission of the Sun and Planets. Oxford: Permagon Press.


Keywords


active antenna; Moon; radio astronomy observations; sensitivity

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)