A SYNTHESIS OF TEMPORAL VARIATIONS IN DOPPLER SPECTRA RECORDED AT A QUASI-VERTICAL INCIDENCE BY THE HF DOPPLER RADAR WITH SPACED RECEIVERS

DOI: https://doi.org/10.15407/rpra26.03.211

V. F. Pushin, L. F. Chernogor

Abstract


Purpose: The ionospheric channel is widely used for the communication, radio navigation, radar, direction finding, radio astronomy, and remote radio probing systems. The radio channel parameters are characterized by nonstationarity due to the dynamic processes in the ionosphere, and therefore their study is one of the topical problems of space radio physics and earth-space radio physics of geospace. This work aims at presenting the results of synthesis of temporal variations in the Doppler spectra obtained by the Doppler probing of the ionosphere at vertical and quasi-vertical incidence.

Design/methotology/approach: One of the most effective methods of ionosphere research is the Doppler sounding technique. It has a high time resolution (about 10 s), a Doppler shift resolution (0.01–0.1 Hz), and the accuracy of Doppler shift measurements (~0.01 Hz) that permits monitoring the variations in the ionospheric electron density (10–4–10–3) or the study of the ionospheric plasma motion with the speed of 0.1-1 m/s and greater. The solution of the inverse radio physical problem, consisting in determination of the ionosphere parameters, often means solving the direct radio physical problem. In the Doppler sounding technique, it belongs with the construction of variations in Doppler spectra and comparing them with the Doppler spectra measurements.

Findings: For the radio wave ordinary component, three echoes being produced by three rays are observed. Influence of the geomagnetic fi eld and large horizontal gradients in the electron density of δ≥10 % give rise to complex ray structures with caustic surfaces. The ionospheric disturbances traveling along the magnetic meridian form the skip zones. The longitudinal and transverse displacement of the ray reflection point attains a few tens of kilometers along the vil. Haidary to vil. Hrakove quasi-vertical radiowave propagation path, for which the great circle range is 50 km. For the vertical incidence, the signal azimuth at the receiver coincides with the traveling ionospheric disturbance azimuth. The synthesis of temporal variations in the HF Doppler spectra has been made and compared with the temporal variations in the Doppler spectra recorded with the V. N. Karazin Kharkiv National University radar. The estimate of δ=15 % obtained confirms the existence of large horizontal gradients in electron density.

Conclusions: Temporal variations in Doppler spectra and in azimuth have been calculated for the vertical and quasi-vertical incidence with allowance for large horizontal gradients of the electron density caused by traveling ionospheric disturbances.

Key words: ionosphere, Doppler sounding at oblique incidence, synthesis of temporal variations in HF Doppler spectra, traveling ionospheric disturbances, electron density

Manuscript submitted 04.06.2021

Radio phys. radio astron. 2021, 26(3): 211–223

REFERENCES

1. CHERNOGOR, L. F., GARMASH, K. P., PODNOS, V. A., ROZUMENKO, V. T., TSYMBAL, A. M. and TYRNOV, O. F, 2012. The Upgraded Kharkiv V. N. Karazin National University Radiophysical Observatory. Sun Geosph. [online]. vol 7, no. 2, pp. 133–139 [viewed 1 June 2021]. Available from: http://newserver.stil.bas.bg/SUNGEO//00SGArhiv/SG_v7_No2_2012-pp-133-139.pdf

2. CHERNOGOR, L. F., GARMASH, K. P., PODNOS, V. A. and TYRNOV, O. F., 2013. The V. N. Karazin Kharkiv National University Radiophysical Observatory – the tool for ionosphere monitoring in space experiments. In: Space Project “Ionosat-Micro”. Kyiv, Ukraine: Academperiodyka Publ, pp. 160–182. (in Russian).

3. GARMASH, K. P., GOKOV, A. M., KOSTROV, L. S., ROZUMENKO, V. T., TYRNOV, O. F., FEDORENKO Y. P., TSYMBAL, A. M. and CHERNOGOR, L. F., 1998. Radiophysical Research and Modeling of Processes in the Ionosphere Disturbed by Sources of Various Nature. Visnyk of V. N. Karazin Kharkiv National University. Ser. Radio Physics and Electronics. vol 405, pp. 157–177. (in Russian).

4. GARMASH, K. P., ROZUMENKO, V. T., TYRNOV, O. F., TSYMBAL, A. M. and CHERNOGOR, L. F., 1999. Radio propagation studies of the processes acting in the near-Earth plasma disturbed by high-energy sources. Part 1. Zarubezhnaya radioelektronika. Uspekhi sovremennoi radioelektroniki. no. 7, pp. 3–15. (in Russian).

5. GARMASH, K. P., GOKOV, A. M., KOSTROV, L. S., ROZUMENKO, V. T., TYRNOV, O. F., FEDORENKO, Y. P., TSYMBAL, A. M. and CHERNOGOR, L. F., 1999. Radiophysical Investigations and Modeling of Ionospheric Processes Generated by Sources of Various Nature. 1. Processes in a Naturally Disturbed Ionosphere. Technical Facilities. Telecommun. Radio Eng. vol. 53, no. 4–5, pp. 6–20. DOI: https://doi.org/10.1615/TelecomRadEng.v53.i4-5.20

6. BLAGOVESHCHENSKAYA, N. F., 2001. Geophysical Effects of Active Impacts in Near-Earth Space. Saint-Petersburg, Russia: Gidrometeoizdat Publ. (in Russian).

7. PIETRELLA, M., PERRONE, L., FONTANA, G., ROMANO, V., MALAGNINI, A., TUTONE, G., ZOLESI, B., CANDER, LJ. R., BELEHAKI, A., TSAGOURI, I., KOURIS, S. S., VALLIANATOS, F., MAKRIS, J. and ANGLING, M., 2009. Oblique-incidence ionospheric soundings over Central Europe and their application for testing now casting and long term prediction models. Adv. Space Res. vol. 43, is. 11, pp. 1611–1620. DOI: https://doi.org/10.1016/j.asr.2008.01.022

8. MLYNARCZYK, J., KOPERSKI, P. and KULAK, A., 2012. Multiple-site investigation of the properties of an HF radio channel and the ionosphere using Digital Radio Mondiale broadcasting. Adv. Space Res. vol. 49, is. 1, pp. 83–88. DOI: https://doi.org/10.1016/j.asr.2011.09.031

9. SHI, S.-Z., ZHAO, Z.-Y., LIU, Y., CHEN, G., LI, T., LIU, J.-N. and YAO, M., 2014. Experimental demonstration for ionospheric sensing and aircraft detection with a HF skywave multistatic radar. IEEE Geosci. Remote SensLett. vol. 11, no. 7, pp. 1270–1274. DOI: https://doi.org/10.1109/LGRS.2013.2291831

10. SHI, S.-Z., CHEN, G., YANG, G.-B., LI, T., ZHAO, Z.-Y. and LIU, J.-N., 2015. Wuhan ionospheric oblique-incidence sounding system and its new application in localization of ionospheric irregularities. IEEE Trans. Geosci. Remote Sens. vol. 53, no. 4, pp. 2185–2194. DOI: https://doi.org/10.1109/TGRS.2014.2357443

11. VERHULST, T., ALTADILL, D., MIELICH, J., REINISCH, B., GALKIN, I., MOUZAKIS, A., BELEHAKI, A., BUREŠOVÁ, D., STANKOV, S., BLANCH, E. and KOUBA, D., 2017. Vertical and oblique HF sounding with a network of synchronised ionosondes. Adv. Space Res. vol. 60, is. 8, pp. 644–1656. DOI: https://doi.org/10.1016/j.asr.2017.06.033

12. LAŠTOVIČKA, J and CHUM, J., 2017. A review of results of the international ionospheric Doppler sounder network. Adv. Space Res. vol. 60, is. 8, pp. 1629–1643. DOI: https://doi.org/10.1016/j.asr.2017.01.032

13. CHERNOGOR, L. F., GARMASH, K. P., GUO, Q., ZHENG, Y., PODNOS, V. A., ROZUMENKO, V. T., TYRNOV, O. F. and TSYMBAL, A. M., 2018. The coherent multi-frequency multipath system for radiophysical monitoring of dynamic processes in the ionosphere. Visnyk of V. N. Karazin Kharkiv National University. Ser. Radio Physics and Electronics. vol. 28, pp. 88–93. (in Russian).

14. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO, V. T. and ZHENG, Y., 2019. Dynamical processes in the ionosphere following the moderate earthquake in Japan on 7 July 2018. J. Atmos. Sol.-Terr. Phys. vol. 186, pp. 88–103. DOI: https://doi.org/10.1016/j.jastp.2019.02.003

15. GUO, Q., ZHENG, Y., CHERNOGOR, L. F., GARMASH, K. P. and ROZUMENKO, V. T., 2019. Ionospheric processes observed with the passive oblique-incidence HF Doppler radar. Visnyk of V. N. Karazin Kharkiv National University. Ser. Radio Physics and Electronics. vol. 30, pp. 3–15.

16. LUO, Y., GUO, Q., ZHENG, Y., GARMASH, K. P., CHERNOGOR, L. F. and SHULGA, S. N., 2019. HF radio-wave characteristic variations over China during moderate earthquake in Japan on September 5, 2018. Visnyk of V. N. Karazin Kharkiv National University. Ser. Radio Physics and Electronics. vol. 30, pp. 16–26. (in Ukrainian).

17. GUO, Q., CHERNOGOR, L. F., GARMASH, K. P., ROZUMENKO, V. T. and ZHENG, Y., 2020. Radio Monitoring of Dynamic Processes in the Ionosphere Over China During the Partial Solar Eclipse of 11 August 2018. Radio Sci. vol. 55, is. 2, id. e2019RS006866. DOI: https://doi.org/10.1029/2019RS006866

18. CHERNOGOR, L. F., GARMASH, K. P., GUO, Q., LUO, Y., ROZUMENKO, V. T. and ZHENG, Y., 2020. Ionospheric storm effects over the People’s Republic of China on 14 May 2019: Results from multipath multi-frequency oblique radio sounding. Adv. Space Res. vol. 66, is. 2, pp. 226–242. DOI: https://doi.org/10.1016/j.asr.2020.03.037

19. LUO, Y., CHERNOGOR, L. F., GARMASH, K. P., GUO, Q., ROZUMENKO, V. T., SHULGA, S. N. and ZHENG, Y., 2020. Ionospheric effects of the Kamchatka meteoroid: Results from multipath oblique sounding. J. Atmos. Sol.-Terr. Phys. vol. 207, id. 105336. DOI: https://doi.org/10.1016/j.jastp.2020.105336

20. CHERNOGOR, L. F., GARMASH, K. P., GUO, Q., ROZUMENKO, V. T. and ZHENG, Y., 2020. Passive Radar for Oblique-Incidence Ionospheric Sounding: Observations of Ionospheric Storms. In: 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukrain, September 21-25, 2020, pp. 253–258. DOI: https://doi.org/10.1109/UkrMW49653.2020.9252713

21. CHERNOGOR, L. F., GARMASH, K. P., GUO, Q., LUO, Y., ROZUMENKO, V. T. and ZHENG, Y., 2020. Oblique-Incidence Ionospheric Radio-Sounding: Seismo-Ionospheric Effects. In: 2020 IEEE Ukrainian Microwave Week (UkrMW). Kharkiv, Ukrain, September 21-25, 2020, pp. 354–359. DOI: https://doi.org/10.1109/UkrMW49653.2020.9252767

22. CHERNOGOR, L. F., GARMASH, K. P., GUO, Q. and ZHENG, Y., 2021. Effects of the Strong Ionospheric Storm of August 26, 2018: Results of Multipath Radiophysical Monitoring. Geomagn. Aeron. vol. 61, is. 1, pp. 73–91. DOI: https://doi.org/10.1134/S001679322006002X

23. AFRAIMOVICH, E. L., 1982. Interference methods of radio sounding of the ionosphere. Moscow, Russia: Nauka Publ. (in Russian).

24. REINISCH, B. W., 1986. New techniques in ground-based ionospheric sounding and studies. Radio Sci. vol. 21, is. 3, pp. 331–341. DOI: https://doi.org/10.1029/RS021i003p00331

25. PUSHIN, V. F. and CHERNOGOR, L. F., 2014. Spectral analysis of reference signal and of HF signal reflected from the ionosphere beats. Radio Phys. Radio Astron. vol. 19, no. 2, pp. 160–169. (in Russian). DOI: https://doi.org/10.15407/rpra19.02.160

26. PUSHIN, V. F. and KOSTROV, L. S., 1999. 3-D ray-tracing synthesis of multiparameter ionograms as obtained by digital sounders in a disturbed ionosphere. Telecommun. Radio Eng. vol. 53, no. 2, pp. 58–64. DOI: https://doi.org/10.1615/TelecomRadEng.v53.i2.110

27. HASELGROVE, C. B. and HASELGROVE, J., 1960. Twisted Ray Paths in the Ionosphere. Proc. Phys. Soc. vol. 75, no. 3, pp. 357–363. DOI: https://doi.org/10.1088/0370-1328/75/3/304

28. DAVIES, K., 1973. Radio Waves in the Ionosphere. Moscow, Russia: Mir Publ. (in Russian).

29. GERSHMAN, B. N., 1974. Dynamics of ionospheric plasma. Moscow, Russia: Nauka Publ. (in Russian).

30. BRUNELLI, B. E. and NAMGALADZE, A. A., 1988. Physics of the ionosphere. Moscow, Russia: Nauka Publ. (in Russian).

31. AFRAIMOVICH, E. L. and PEREVALOVA, N. P., 2006. GPS-monitoring of the Earth’s upper atmosphere. Irkutsk, Russia: SI SC RRS ESSC SB RAMS Publ. (in Russian).

32. CHERNOGOR, L. F. and GARMASH, K. P., 2018. Magnetospheric and Ionospheric Effects Accompanying the Strongest Technogenic Catastrophe. Geomagn. Aeron. vol. 58, is. 5, pp. 673–685. DOI: https://doi.org/10.1134/S0016793218050031

33. PANASENKO, S. V., OTSUKA, Y., VAN DE KAMP, M., CHERNOGOR, L. F., SHINBORI, A., TSUGAWA, T. and NISHIOKA, M., 2019. Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Sol.-Terr. Phys. vol. 191, id. 105051. DOI: https://doi.org/10.1016/j.jastp.2019.05.015


Keywords


ionosphere; Doppler sounding at oblique incidence; synthesis of temporal variations in HF Doppler spectra; traveling ionospheric disturbances; electron density

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)