LARGE-SCALE REDUCTIONS IN THE ELECTRON DENSITY OF IONOSPHERIC F-REGION, OBSERVABLE ALONG ROCKET TRAJECTORIES AT LAUNCH

DOI: https://doi.org/10.15407/rpra27.01.026

L. F. Chernogor

Abstract


Purpose. The object of the study are electron density depletions (‘holes’) occurring in the ionospheric F-region under the action of rocket exhaust products. The purpose is to present and discuss the results of observations concerning the ionospheric holes that were detected in the course of a number of launches of medium-lift Kosmos vehicles from the Kapustin Yar spaceport. Neither that cosmodrome, nor the rocket type had been subjects of similar analysis before.

Design/methodology/approach. The observations at the Kapustin Yar cosmodrome were performed with a portable vertical Doppler sounder. The beats between a reference signal and the one reflected from the ionosphere were subjected to spectral analysis, which allowed identifying the principal mode of the Doppler frequency shift and establishing time dependences of that frequency shift . An ionosonde located nearby was used for monitoring the underlying state of the ionosphere.

Findings. The measurements performed with the vertical Doppler sounder near the launch site of the medium-lift Kosmos rocket have allowed obtaining first estimates for the principal parameters of the ionospheric holes arising in the F-region along the vehicle trajectory, as well as for the accompanying quasi-periodic variations in the electron density. The spatial scale sizes of the holes have been found to be in excess of 300 km, while the electron density reductions may attain ≈ 50 %. These results are in agreement with the data obtained by international researchers for effects from heavy- and super heavy-lift launch vehicles. Also, note that the types of propellant differed significantly. The propagation velocity of the hole’s front edge was estimated to be ≈ 140 m/s. The hole formation was accompanied by quasi-periodic variations in the Doppler frequency shift as a result of radar signal scattering from the electron density fluctuations produced by propagating atmospheric gravity- and infrasonic waves. The atmospheric gravity waves showed periods in the range from 7 to 20 minutes, and the infrasonic waves had a period close to 2 min. The amplitudes of quasi-periodic  electron density variations were estimated for the two modes to be ≈ 0.3−1.5 % and
≈ 0.02− 0.03 %, respectively.

Conclusions. Medium-lift launch vehicles (mass of a few hundred tons) are capable of forming ionospheric ‘holes’ of several hundred kilometers in size and of reducing the electron density in the F-region by a factor greater than 2.

Keywords: Kosmos type rocket, ionosphere, Doppler frequency shift, ionospheric hole, disturbance parameters, electron density, wave disturbances

Manuscript submitted 01.09.2021

Radio phys. radio astron. 2022, 27(1): 026-037

REFERENCES

1. ADUSHKIN, V. V., KOZLOV, S. I. and PETROV, A. V., eds., 2000. Th e environmental problems and the risks of rocket-space technology impact on the natural environment: Handbook. Moscow, Russia: Ankil Publ. (in Russian).

2. CHERNOGOR, L. F., 2009. Radiophysical and Geomagnetic Eff ects of Rocket Engine Burn: Monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).

3. CHERNOGOR, L. F. and BLAUNSTEIN, N., 2013. Radiophysical and Geomagnetic Eff ects of Rocket Burn and Launch in the Nearthe-Earth Environment. Boca Raton, London, New York: CRC Press.

4. ADUSHKIN, V. V., KOZLOV, S. I. and SIL'NIKOV, M. V., eds., 2016. Rocket's environmental impact. Moscow, Russia: GEOS Publ. (in Russian).

5. BOOKER, H. G., 1961. A local reduction of F-region ionization due to missile transit. J. Geophys. Res. vol. 66, is. 4, pp. 1073-1079. DOI: https://doi.org/10.1029/JZ066i004p01073

6. JACKSON, J. E., WHALE, H. A. and BAUER, S. J., 1962. Local ionospheric disturbance created by a burning rocket. J. Geophys. Res. vol. 67, is. 5, pp. 2059-2061. DOI: https://doi.org/10.1029/JZ067i005p02059

7. FELKER, J. K. and ROBERTS, W. T., 1966. Ionospheric rarefaction following rocket transit. J. Geophys. Res. vol. 71, is. 19, pp. 4692-4694. DOI: https://doi.org/10.1029/JZ071i019p04692

8. MENDILLO, M., HAWKINS, G. S. and KLOBUCHAR, J. A., 1975. A Large-Scale Hole in the Ionosphere Caused by the Launch of Skylab. Science. vol. 187, is. 4174, pp. 343-346. DOI: https://doi.org/10.1126/science.187.4174.343

9. MENDILLO, M., HAWKINS, G. S. and KLOBUCHAR, J. A., 1975. A sudden vanishing of the ionospheic F region due to the launch of Skylab. J. Geophys. Res. vol. 80, is. 16, pp. 2217-2228. DOI: https://doi.org/10.1029/JA080i016p02217

10. KARLOV, V. D., KOZLOV, S. I. and TKACHEV, G. N., 1980. Large-scale disturbances of the ionosphere occurring during the fl ight of a rocket with a working engine. Cosmic Research. vol. 18, is. 2, pp. 266-277. (in Russian).

11. MENDILLO, M., 1981. Th e eff ect of rocket launches on the ionosphere. Adv. Space Res. vol. 1, is. 2, pp. 275-290. DOI: https://doi.org/10.1016/0273-1177(81)90302-1

12. MENDILLO, M., BAUMGARDNER, J., ALLEN, D. P., FOSTER, J., HOLT, J., ELLIS, G. R. A., KLEKOCIUK, A. and REBER, G., 1987. Spacelab-2 Plasma Depletion Experiments for Ionospheric and Radio Astronomical Studies. Science. vol. 238, is. 4831, pp. 1260-1264. DOI: https://doi.org/10.1126/science.238.4831.1260

13. MENDILLO, M., 1988. Ionospheric holes: A review of theory and recent experiments. Adv. Space Res. vol. 8, is. 1, pp. 51-62. DOI: https://doi.org/10.1016/0273-1177(88)90342-0

14. BERNHARDT, P. A., KASHIWA, B. A., TEPLEY, C. A. and NOBLE, S. T., 1988. Spacelab 2 Upper Atmospheric Modifi cation Experiment Over Arecibo. I - Neutral Gas Dynamics. Astrophys. Lett. Commun. vol. 27, no. 3, pp. 169-181.

15. BERNHARDT, P. A., SWARTZ, W. E., KELLY, M. C., SULZER, M., P. and NOBLE, S. T., 1988. Spacelab 2 Upper Atmospheric Modifi cation Experiment Over Arecibo. II - Plasma dynamics. Astrophys. Lett. Commun. vol. 27, no. 3, pp. 183-198.

16. STONE, M. L., BIRD, L. E. and BALSER, M. A., 1964. A Faraday rotation measurement on the ionospheric perturbation produced by a burning rocket. J. Geophys. Res. vol. 69, is. 5, pp. 971-978. DOI: https://doi.org/10.1029/JZ069i005p00971

17. BERNHARDT, P. A., BALLENTHIN, J. O., BAUMGARDNER, J. L., BHATT, A., BOYD, I. D., BURT, J. M., CATON, R. G., COSTER, A., ERICKSON, P. J., HUBA, J. D., EARLE, G. D., KAPLAN, C. R., FOSTER, J. C., GROVES, K. M., HAASER, R. A., HEELIS, R. A., HUNTON, D. E., HYSELL, D. L., KLENZING, J. H., LARSEN, M. F., LIND, F. D., PEDERSEN, T. R., PFAFF, R. F., STONEBACK, R. A., RODDY, P. A., RODRIQUEZ, S. P., SAN ANTONIO, G. S., SCHUCK, P. W., SIEFRING, C. L., SELCHER, C. A., SMITH, S. M., TALAAT, E. R., THOMASON, J. F., TSUNODA, R. T. and VARNEY, R. H., 2012. Ground and Space-Based Measurement of Rocket Engine Burns in the Ionosphere. IEEE Trans. Plasma Sci. vol. 40, no. 5, pp. 1267-1286. DOI: https://doi.org/10.1109/TPS.2012.2185814

18. NAKASHIMA, Y. and HEKI, K., 2014. Ionospheric Hole Made by the 2012 North Korean Rocket Observed with a Dense GNSS Array in Japan. Radio Sci. vol. 49, is. 7, pp. 497-505. DOI: https://doi.org/10.1002/2014RS005413

19. ZINN, J., SUTHERLAND, C. D., STONE, S. N., DUNCAN, L. M. and BEHNKE, R., 1982. Ionospheric eff ects of rocket exhaust products - HEAO-C and Skylab. J. Atmos. Terr. Phys. vol. 44, is. 12, pp. 1143-1171. DOI: https://doi.org/10.1016/0021-9169(82)90025-3

20. WAND, R. H. and MENDILLO, M., 1984. Incoherent scatter observations of an artifi cially modifi ed ionosphere. J. Geophys. Res. Space Phys. vol. 89, is. A1, pp. 203-215. DOI: https://doi.org/10.1029/JA089iA01p00203

21. GORELY, S. I., LAMPEY, V. K. and NIKOL'SKIY, A. V., 1994. Ionospheric eff ects of spacecraft launches. Geomagnetizm i aeronomiya. vol. 34, is. 3, pp. 158-161. (in Russian).

22. AKIMOV, V. F., KALININ, YU. K., PLATONOV, T. D., TULINOVA, G. G. and SHUSTOV, E. I., 2000. Th e eff ect of ballistic missile trail development in the midlatitude ionosphere. Geomagn. Aeron. vol. 40, is. 4, pp. 537-540.

23. BURMAKA, V. P., TARAN, V. I. and CHERNOGOR, L. F., 2004. Ionospheric wave disturbances accompanied by rocket launches against a background of natural transient processes. Geomagn. Aeron. vol. 44, is. 4, pp. 476-491.

24. BRYUNELLI, B. E. and NAMGALADZE, A. A., 1988. Physics of the ionosphere. Moscow, Russia: Nauka Publ. (in Russian).

25. SCHUNK, R. W. and NAGY, A., 2009. Ionospheres: Physics, Plasma Physics, and Chemistry. New York: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511635342

26. LI, G., NING, B., ABDU, M. A., WANG, C., OTSUKA, Y., WAN, W., LEI, J., NISHIOKA, M., TSUGAWA, T., HU, L., YANG, G. and YAN, C., 2018. Daytime F-region irregularity triggered by rocket-induced ionospheric hole over low latitude. Prog. Earth Planet. Sci. vol. 5, is. 1, id. 11. DOI: https://doi.org/10.1186/s40645-018-0172-y

27. SSESSANGA, N., KIM, Y. H., CHOI, B. and CHUNG, J.-K., 2018. Th e 4D‐var Estimation of North Korean Rocket Exhaust Emissions Into the Ionosphere. J. Geophys. Res. Space Phys. vol. 123, is. 3, pp. 2315-2326. DOI: https://doi.org/10.1002/2017JA024596

28. ZHU, J., FANG, H., XIA, F., WAN, T. and TAN, X., 2019. Numerical Simulation of Ionospheric Disturbance Generated by Ballistic Missile. Adv. Math. Phys. vol. 2019, id. 7935067. DOI: https://doi.org/10.1155/2019/7935067

29. SAVASTANO, G., KOMJATHY, A., SHUME, E., VERGADOS, P., RAVANELLI, M., VERKHOGLYADOVA, O., MENG, X. and CRESPI, M., 2019. Advantages of Geostationary Satellites for Ionospheric Anomaly Studies: Ionospheric Plasma Depletion Following a Rocket Launch. Remote Sens. vol. 11, is. 14, id. 1734. DOI: https://doi.org/10.3390/rs11141734

30. BOWDEN, G. W., LORRAIN, P. and BROWN, M., 2020. Numerical Simulation of Ionospheric Depletions Resulting From Rocket Launches Using a General Circulation Model. J. Geophys. Res. Space Phys. vol. 125, is. 6. id. e2020JA027836. DOI: https://doi.org/10.1029/2020JA027836

31. SAHA, K., DE, B. K., PAUL, B. and GUHA, A., 2020. Satellite launch vehicle eff ect on the Earth's lower ionosphere: A case study. Adv. Space Res. vol. 65, is. 11, pp. 2507-2514. DOI: https://doi.org/10.1016/j.asr.2020.02.026

32. ZHU, J. and FANG, H., 2020. Research on the disturbance of ballistic missile to ionosphere by using 3D ray tracing method. Adv. Space Res. vol. 65, is. 3, pp. 933-942. DOI: https://doi.org/10.1016/j.asr.2019.10.028

33. CHERNOGOR, L. F., GARMASH, K. P., PODNOS, V. A. and TYRNOV, O. F., 2013. Th e V. N. Karazin Kharkiv National University Radio Physical Observatory - the tool for ionosphere monitoring in space experiments. In: S. A. ZASUKHA and O. P. FEDOROV, eds. Space Project «Ionosat-Micro». Kyiv, Ukraine: Academperiodika Publ., pp. 160-182. (in Russian).

34. DAVIES, K., 1990. Ionospheric radio. London: Peter Peregrinus Ltd. DOI: https://doi.org/10.1049/PBEW031E

35. CHERNOGOR, L. F., 2013. Physical eff ects of solar eclipses in atmosphere and geospace: monograph. Kharkiv, Ukraine: V. N. Karazin Kharkiv National University Publ. (in Russian).

36. GOSSARD, E. E. and HOOKE, W. H., 1975. Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves - Th eir Generation and Propagation (Vol. 2 of Developments in Atmospheric Science). New York: Elsevier Scientifi c Pub. Co.

37. MA, X., FANG, H., WANG, S. and CHANG, S., 2021. Impact of the ionosphere disturbed by rocket plume on OTHR radio wave propagation. Radio Sci. vol. 56, no. 4, id. e2020RS007183. DOI: https://doi.org/10.1029/2020RS007183

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)