EFFECTS FROM THE JUNE 10, 2021 SOLAR ECLIPSE IN THE HIGH-LATITUDE IONOSPHERE: RESULTS OF GPS OBSERVATIONS

DOI: https://doi.org/10.15407/rpra27.02.093

L. F. Chernogor, Yu. B. Mylovanov, Y. Luo

Abstract


Subject and Purpose. The unique natural phenomena which solar eclipses are can activate coupling between the subsystems of the Earth–atmosphere–ionosphere–magnetosphere system. Following an eclipse, disturbances may get induced in all the subsystems and their associated geophysical fields. It is important that a subsystem’s response does not depend on the phase of the eclipse alone, but also on the state of space weather and the observation site coordinates. The majority of solar eclipses occur at middle and low latitudes. The maximum phase of the June 10, 2021 annular eclipse was observed at high latitudes, including the North Pole. The highlatitude ionosphere is fundamentally different from the mid- and low-latitude ionosphere as it stays in a metastable state, such that any impact may be capable of activating subsystem coupling. The relevance of this study is conditioned by the diversity of the solar eclipse effects in the high-latitude ionosphere. The purpose of this work is to present observational results concerning variations in the total electron content (TEC) in the high-latitude ionosphere in the course of the June 10, 2021 solar eclipse.

Methods and Methodology. An array of eleven terrestrial GPS receive stations and eight GPS satellites were used for the observations.

Results. The effects from the solar eclipse were distinctly observable at all eleven reception sites and from all the eight satellites. On the average, i.e. with random fluctuations neglected, changes in illumination at ionospheric heights were followed by decreases in the TEC. All of the observation records demonstrated a decrease in the TEC at the early stage of the eclipse. Some 60 to 100 min later

the TEC attained a minimum and then returned to virtually the initial value. The lowest observed magnitude of the TEC was 1.0–5.1 TEC units, while, on the average, it was found to be 2.7 ± 1.6 TEC units, or 35 ± 18%. The greatest decrease in the TEC lagged behind the maximum phase of the solar eclipse (lowest illumination at the heights of the ionosphere) by 5–30 min, or 15.7 ± 6.8 min on the average. A few TEC records obtained at different stations showed quasi-periodic variations with the periods ranging from 5 to 19 min and amplitudes of 1 to 12%.

Conclusions. The annular eclipse of June 10, 2021 acted to significantly disturb the high-latitude ionosphere where aperiodic and quasi-periodic disturbances of the TEC took place.

 

Manuscript submitted 15.10.2021

Radio phys. radio astron. 2022, 27(2): 093-109

 

  1. Eccles, W.H., 1912. Effect of the eclipse on wireless telegraphic signals. Electrician, 69, pp. 109–117.
  2. Chernogor, L.F., 2013. Physical effects of solar eclipses in the atmosphere and geospace. Kharkiv, Ukraine: V.N. Karazin Kharkiv National University Publ. (in Russian).
  3. Gokov, A.M. and Chernogor, L.F., 2000. Processes in the Lower Ionosphere during August 11, 1999 Solar Eclipse. Radio Phys. Radio Astron., 5(4), pp. 348–360 (in Russian).
  4. Kostrov, L.S. and Chernogor, L.F., 2000. Processes in the Bottomside Ionosphere during August 11, 1999 Solar Eclipse. Radio Phys. Radio Astron., 5(4), pp. 361–370 (in Russian).
  5. Chernogor, L.F., 2000. Magnetosphere Electron Precipitation Induced by a Solar Eclipse. Radio Phys. Radio Astron., 5(4), pp. 371–375 (in Russian).
  6. Akimov, L.A., Grigorenko, E.I., Taran, V.I., Tyrnov, O.F. and Chernogor, L.F., 2002. Integrated radio physical and optical studies of dynamic processes in the atmosphere and geospace caused by the solar eclipse of August 11, 1999. Zarubezhnaya radioelektronika. Uspekhi sovremennoi radioelektroniki, 2, pp. 25–63 (in Russian).
  7. Grigorenko, Ye.I., Pazura, S.A., Puliaiev, V.A., Taran, V.I. and Chernogor, L.F., 2004. Dynamic processes in the ionosphere during the geospace storm on 30 May and Solar eclipse on 31 May 2003. Space Sci. Technol., 10(1), pp. 12–25 (in Russian). DOI: https://doi.org/10.15407/knit2004.01.012.
  8. Burmaka, V.P., Taran, V.I. and Chernogor, L.F., 2006. Wave-like processes in the ionosphere under quiet and disturbed conditions. 1. Kharkov incoherent scatter radar observations. Geomagn. Aeron., 46(2), pp. 183–198. DOI: https://doi.org/10.1134/S0016793206020071.
  9. Burmaka, V.P., Taran, V.I. and Chernogor, L.F., 2006. Wave-like processes in the ionosphere under quiet and disturbed conditions. 2. Analysis of observations and simulation. Geomagn. Aeron., 46(2), pp. 199–208. DOI: https://doi.org/10.1134/S0016793206020083.
  10. Burmaka, V.P., Grigorenko, Ye.I., Emel’yanov, L.Ya., Lysenko, V.N., Lyashenko, M.V. and Chernogor, L.F., 2007. Radar observations of effects in geospace caused by a partial solar eclipse on 29 March 2006. Uspekhi Sovremennoi Radioelektroniki, 3, pp. 38–53 (in Russian).
  11. Burmaka, V.P., Lysenko, V.N., Lyashenko, M.V. and Chernogor, L.F., 2007. Tropospheric-ionospheric effects of the 3 October 2005 partial solar eclipse in Kharkiv. 1. Observations. Space Sci. Technol., 13(6), pp. 74–86 (in Russian). DOI: https://doi.org/10.15407/knit2007.06.074.
  12. Akimov, A.L., Akimov, L.A. and Chernogor, L.F., 2007. Turbulence Parameters in the Atmosphere Associated with Solar Eclipses. Radio Phys. Radio Astron., 12(2), pp. 117–134 (in Russian).
  13. Grigorenko, E.I., Lyashenko, M.V. and Chernogor, L.F., 2008. Eff ects of the solar eclipse of March 29, 2006, in the ionosphere and atmosphere. Geomagn. Aeron., 48(3), pp. 337–351. DOI: https://doi.org/10.1134/S0016793208030092.
  14. Lyashenko, M.V. and Chernogor, L.F., 2008. Atmospheric-ionospheric eff ects of the 3 October 2005 partial solar eclipse in Kharkiv. 2. Modeling and discussion. Space Sci. Technol., 14(1), pp. 57–64 (in Russian). DOI: https://doi.org/10.15407/knit2008.01.057.
  15. Chernogor, L.F., 2008. Eff ects of solar eclipses in the surface atmosphere. Izv. Atmos. Ocean. Phys., 44(4), pp. 432—447. DOI: https://doi.org/10.1134/S000143380804004X.
  16. Dzyubanov, D.A., Emelyanov, L.Ya. and Chernogor, L.F., 2009. Plasma dynamics of the ionosphere above Kharkiv during the solar eclipse of 1 August 2008. Space Sci. Technol., 15(3), pp. 62–69 (in Russian). DOI: https://doi.org/10.15407/knit2009.03.062.
  17. Emelyanov, L.Ya., Lyashenko, M.V. and Chernogor, L.F., 2009. Some eff ects in the geospace plasma during partial Solar eclipse of 1 August 2008 above Kharkiv. 1. Th e observation results. Space Sci. Technol., 15(3), pp. 70–81 (in Russian). DOI: https://doi.org/10.15407/knit2009.03.070.
  18. Lyashenko, M.V. and Chernogor, L.F., 2009. Some eff ects in the geospace plasma during the partial Solar eclipse of 1 August 2008 above Kharkov. 2. Calculation results and discussion. Space Sci. Technol., 15(4), pp. 3–11 (in Russian). DOI: https://doi.org/10.15407/knit2009.04.003
  19. Emelyanov, L.Ya., Sklyarov, I.B. and Chernogor, L.F., 2009. Ionosphere response to the solar eclipse on 1 August 2008: Some results of vertical sounding. Space Sci. Technol., 15(4), pp. 12–21 (in Russian). DOI: https://doi.org/10.15407/knit2009.04.012.
  20. Burmaka, V.P. and Chernogor, L.F., 2009. Wave Disturbance Radio Observations in the Ionosphere Associated with the August 1, 2008 Partial Eclipse. Radio Phys. Radio Astron., 14(4), pp. 390–402 (in Russian).
  21. Chernogor, L.F., 2011. Dynamic processes in the near-ground atmosphere during the solar eclipse of August 1, 2008. Izv. Atmos. Ocean. Phys., 47(1), pp. 77–86. DOI: https://doi.org/10.1134/S000143381101004X.
  22. Chernogor, L.F., 2010. Wave response of the ionosphere to the partial solar eclipse of August 1, 2008. Geomagn. Aeron., 50(3), pp. 346–361. DOI: https://doi.org/10.1134/S0016793210030096.
  23. Akimov, A.L. and Chernogor, L.F., 2010. Effects of the solar eclipse of August 1, 2008, on the Earth’s lower atmosphere. Kinemat. Phys. Celest. Bodies, 26(3), pp. 135–145. DOI: https://doi.org/10.3103/S0884591310030050.
  24. Garmash, K.P., Leus, S.G., and Chernogor, L.F., 2011. January 4, 2011 Solar Eclipse Effects over Radio Circuits at Oblique Incidence. Radio Phys. Radio Astron., 16(2), pp. 164–176 (in Russian). DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v2.i4.50
  25. Chernogor, L.F., 2011. Th e Earth–atmosphere–geospace system: main properties and processes. Int. J. Remote. Sens., 32(11), pp. 3199–3218. DOI: https://doi.org/10.1080/01431161.2010.541510
  26. Chernogor, L.F. and Barabash, V.V., 2011. The response of the middle ionosphere to the solar eclipse of 4 January 2011 in Kharkiv: some results of vertical sounding. Space Sci. Tech., 17(4), pp. 41–52 (in Russian). DOI: https://doi.org/10.15407/knit2011.04.041.
  27. Chernogor, L.F., Grigorenko, Ye.I. and Lyashenko, M.V., 2011. Effects in geospace during partial solar eclipses over Kharkiv. Int. J. Remote. Sens., 32(11), pp. 3219–3229. DOI: https://doi.org/10.1080/01431161.2010.541509.
  28. Domnin, I.F., Emelyanov, L.Ya. and Chernogor, L.F., 2012. Th e Dynamics of Ionosphere Plasma over Kharkiv during the Solar Eclipse of January 4, 2011. Radio Phys. Radio Astron., 17(2), pp. 132–145 (in Russian). DOI: https://doi.org/10.1615/RadioPhysicsRadioAstronomy.v3.i4.50
  29. Burmaka, V.P., Domnin, I.F. and Chernogor, L.F., 2012. Radiophysical Observations of Acoustic-Gravity Waves in the Ionosphere during Solar Eclipse of January 4, 2011. Radio Phys. Radio Astron., 17(4), pp. 344–352 (in Russian).
  30. Chernogor, L.F., 2012. Eff ects of solar eclipses in the ionosphere: Results of Doppler sounding: 1. Experimental data. Geomagn. Aeron., 52(6), pp. 768–778. DOI: https://doi.org/10.1134/S0016793212050039.
  31. Chernogor, L.F., 2012. Effects of Solar Eclipses in the Ionosphere: Doppler sounding results: 2. Spectral analysis. Geomagn. Aeron., 52(6), pp. 779–792. DOI: https://doi.org/10.1134/S0016793212050040.
  32. Lyashenko, M.V. and Chernogor, L.F., 2013. Solar eclipse of August 1, 2008, over Kharkov: 3. Calculation Results and discussion. Geomagn. Aeron., 53(3), pp. 367–376. DOI: https://doi.org/10.1134/S0016793213020096.
  33. Burmaka, V.P. and Chernogor, L.F., 2013. Solar eclipse of August 1, 2008, above Kharkov: 2. Observation results of wave disturbances in the ionosphere. Geomagn. Aeron., 53(4), pp. 479–491. DOI: https://doi.org/10.1134/S001679321304004X.
  34. Chernogor, L.F., 2013. Physical processes in the middle ionosphere accompanying the solar eclipse of January 4, 2011, in Kharkov. Geomagn. Aeron., 53(1), pp. 19–31. DOI: https://doi.org/10.1134/S0016793213010052.
  35. Domnin, I.F., Yemel’yanov, L.Ya., Kotov, D.V., Lyashenko, M.V. and Chernogor, L.F., 2013. Solar eclipse of August 1, 2008, above Kharkov: 1. Results of incoherent scatter observations. Geomagn. Aeron., 53(1), pp. 113–123. DOI: https://doi.org/10.1134/S0016793213010076.
  36. Domnin, I.F., Yemel’yanov, L.Ya., Lyashenko, M.V. and Chernogor, L.F., 2014. Partial solar eclipse of January 4, 2011 above Kharkiv: Observation and simulations results. Geomagn. Aeron., 54(5), pp. 583–592. DOI: https://doi.org/10.1134/S0016793214040112.
  37. Chernogor, L.F. and Barabash, V.V., 2015. The Effects of Solar Eclipse of March 20, 2015 over Ionosphere of Europe: Ionosonde Observations. Radio Phys. Radio Astron., 20(4), pp. 311–331 (in Russian). DOI: https://doi.org/10.15407/rpra20.04.311.
  38. Chernogor, L.F., 2016. Atmosphere–ionosphere response to solar eclipse over Kharkiv on March 20, 2015. Geomagn. Aeron., 56(5), pp. 592–603. DOI: https://doi.org/10.1134/S0016793216050030.
  39. Chernogor, L.F. and Garmash, K.P., 2017. Magneto-ionospheric eff ects of the solar eclipse of March 20, 2015, over Kharkov. Geomagn. Aeron., 57(1), pp. 72–83. DOI: https://doi.org/10.1134/S0016793216060062.
  40. Coster, A.J., Goncharenko, L., Zhang, S.-R., Erickson, P.J., Rideout, W. and Vierinen, J., 2017. GNSS Observations of Ionospheric Variations During the 21 August 2017 Solar Eclipse. Geophys. Res. Lett., 44(24), pp. 12041–12048. DOI: https://doi.org/10.1002/2017GL075774.
  41. Chernogor, L.F., Domnin, I.F., Emelyanov L.Ya. and Lyashenko, M.V., 2019. Physical processes in the ionosphere during the solar eclipse on March 20, 2015 over Kharkiv, Ukraine (49.6° N, 36.3° E). J. Atmos. Sol.-Terr. Phys., 182, pp. 1–9. DOI: https://doi.org/10.1016/j.jastp.2018.10.016.
  42. Panasenko, S.V., Otsuka, Y., van de Kamp, M., Chernogor, L.F., Shinbori, A., Tsugawa, T. and Nishioka, M., 2019. Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Sol.-Terr. Phys., 191, id. 105051. DOI: https://doi.org/10.1016/j.jastp.2019.05.015.
  43. Chernogor, L.F. and Mylovanov, Yu.B., 2020. Ionospheric Effects of the August 11, 2018, Solar Eclipse over the People’s Republic of China. Kinemat. Phys. Celest. Bodies, 36(6), pp. 274–290. DOI: https://doi.org/10.3103/S0884591320060021.
  44. Guo, Q., Chernogor, L.F., Garmash, K.P., Rozumenko, V.T. and Zheng, Y., 2020. Radio Monitoring of Dynamic Processes in the Ionosphere over China During the Partial Solar Eclipse of 11 August 2018. Radio Sci., 55(2), id. e2019RS006866. DOI: https://doi.org/10.1029/2019RS006866.
  45. Chernogor, L.F., 2021. Thermal Effect in Surface Atmosphere of the Solar Eclipse on June, 10, 2021. Kinemat. Phys. Celest. Bodies, 37(6), pp. 293—299. DOI: https://doi.org/10.3103/S0884591321060040.
  46. Chernogor, L.F., 2021. Convection Eff ect in the Surface Atmosphere of Solar Eclipses of March 20, 2015, and June 10, 2021. Kinemat. Phys. Celest. Bodies, 37(6), pp. 284–292. DOI: https://doi.org/10.3103/S0884591321060039.
  47. Chernogor, L.F., 2022. Geomagnetic effect of the solar eclipse on June 10, 2022. Kinematika i fizika nebesnykh tel, 38(1), pp. 16–34 (in Ukrainian). DOI: https://doi.org/10.15407/kfnt2022.01.016.
  48. Chernogor, L.F., Holub, М. Yu., Luo, Y., Tsymbal, А.М. and Shevelev, M.B., 2021. Variations in the Geomagnetic Field that Accompanied the 10 June 2021 Solar Eclipse. Visnyk of V.N. Karazin Kharkiv National University. Ser. “Radio Physics and Electronics”, 34, pp. 55–69 (in Ukrainian).
  49. Chernogor, L.F. and Garmash, K.P., 2022. Ionospheric Processes During the 10 June 2021 Partial Solar Eclipse at Kharkiv. Kinematika i fizika nebesnykh tel, 38(2), pp. 3–22 (in Ukrainian). DOI: https://doi.org/10.15407/kfnt2022.02.003.
  50. Chernogor, L.F., Garmash, K.P., Zhdanko, Y.H., Leus, S.G. and Luo, Y., 2021. Features of Ionospheric Effects from the Partial Solar Eclipse over the City of Kharkiv on 10 June 2021. Radio Phys. Radio Astron., 26(4), pp. 326—343 (in Ukrainian). DOI: https://doi.org/10.15407/rpra26.04.326.
  51. Chernogor, L.F. and Domnin, I.F., 2014. Physics of Geospace Storms. Kharkiv, Ukraine: Kharkiv V.N. Karazin National University Publ. (in Russian).
  52. Chernogor, L.F., 2021. Physics of geospace storms. Space Sci. Technol., 27(1), pp. 3–77 (in Ukrainian). DOI: https://doi.org/10.15407/knit2021.01.003.
  53. Afraimovich, E.L. and Perevalova, N.P., 2006. GPS-monitoring of the Earth upper atmosphere. Irkutsk: SI SC RRS ESSC SD RAMS Publ. (in Russian).
  54. NASA., 2021. GNSS Differential Code Bias Product [online]. [viewed 15 Sept. 2021]. Available at: ftp://cddis.nasa.gov/gnss/products/bias/.
  55. International GNSS service, 2013. RINEX: Th e Receiver Independent Exchange Format. Version 3.02 [online]. [viewed 15 Sept. 2021]. Available from: https://files.igs.org/pub/data/format/rinex302.pdf.
  56. Wang, N., Yuan, Y., Li, Z., Montenbruck, O. and Tan, B., 2016. Determination of diff erential code biases with multi-GNSS observations. J. Geod., 90(3), pp. 209–228. DOI: https://doi.org/10.1007/s00190-015-0867-4.
  57. Hofmann-Wellenhof, B., Lichtenegger, H. and Collins, J., 1994. Global Positioning System. Theory and Practice. Wien, New York: Springer-Verlag. DOI: https://doi.org/10.1007/978-3-7091-3311-8
  58. Universitat Bern Astronomical Institute, 2021. Satellite geodesy. CODE Products [online]. [viewed 15 Sept. 2021]. Available at: ftp.aiub.unibe.ch/CODE.
  59. Espenak, F., 2021. Annular Solar Eclipse of 2021 Jun 10 [online]. [viewed 15 Sept. 2021]. Available at: http://www.eclipsewise.com/solar/SEprime/2001-2100/SE2021Jun10Aprime.html.
  60. Bryunelli, B.E. and Namgaladze, A.A., 1988. Physics of the ionosphere. Moscow, Russia: Nauka Publ. (in Russian).
  61. Schunk, R.W. and Nagy, A.F., 2000. Ionospheres: physics, plasma physics, and chemistry. Cambridge: Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511551772

Keywords


high-latitude ionosphere, solar eclipse, total electron content, GPS receiver, GPS satellite, TEC reduction, quasi-periodic disturbance, disturbance time lag

Full Text:

PDF


Creative Commons License

Licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) .