INTENSITY CONTROLLED, NONSPECULAR RESONANT BACK REFLECTION OF LIGHT

DOI: https://doi.org/10.15407/rpra27.03.181

S. L. Prosvirnin, V. V. Khardikov, V. V. Yachin, V. A. Plakhtii, N. V. Sydorchuk

Abstract


Subject and Purpose. Theoretical demonstration of controllable features of a non-conventional resonant back refl ection of light, realizable with the aid of a structured silicon-on-metal covering.

Methods and Methodology. The investigation has been performed through a full-wave numerical simulation in a finite-element technique.

Results. The nonlinear optical properties of a planar structure, involving a set of silicon disks disposed periodically on a silver substrate, have been studied in the Littrow scenario of wave refl ection. The structure manifests a bistable resonant reflectivity property. The magnitudes of both specular and back reflection ratios can be controlled by means of varying the incident light intensity.

Conclusions. An array of identical silicon disks, placed in a periodic order on a silver substrate, can be employed as an efficiently excitable and tunable nonlinear resonant reflective structure implementing Littrow’s non-specular diffraction scenario. As has been found, the effect of nonlinear response from the silicon disks can be used for implementing a regimen of bistable back refl ection, controllable by means of varying the incident wave’s intensity. The nonlinear tunability of the silicon-on-silver structure does promise extensions of the operation area of classical metamaterials of sub-wavelength scale sizes as it offers new applications for the effects of light-matter interaction.

Keywords: metasurface, non-specular reflection, Littrow’s scenario, nonlinear tunability, bistability, numerical simulation

Manuscript submitted 09.05.2022

Radio phys. radio astron. 2022, 27(3):181-187

REFERENCES

1. Enoch, J.M., 2006. History of Mirrors Dating Back 8000 Years. Optom. Vis. Sci., 83(10), pp. 775—781. DOI: 10.1097/01.opx.0000237925.65901.c0

2. Glybovski, S.B., Tretyakov, S.A., Belov, P.A., Kivshar, Y.S. and Simovski, C.R., 2016. Metasurfaces: From microwaves to visible. Phys. Rep., 634, pp. 1—72. DOI:https://doi.org/10.1016/j.physrep.2016.04.004

3. Wang, B.-X., Zhai, X., Wang, G.-Z., Huang, W.-Q. and Wang, L.-L., 2015. A novel dual-band terahertz metamaterial absorber for a sensor application. J. Appl. Phys., 117(1), p. 014504. DOI:https://doi.org/10.1063/1.4905261

4. Yahiaoui, R., Tan, S., Cong, L., Singh, R., Yan, F. and Zhang, W., 2015. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. J. Appl. Phys., 118(8), p. 083103. DOI:https://doi.org/10.1063/1.4929449

5. Sydorchuk, N. and Prosvirnin, S., 2017. Analysis of terahertz wave reflection by an array of double dielectric elements placed on a reflective substrate. In: XXIInd Int. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Th eory (DIPED): proc. Dnipro, Ukraine, 25—28 Sept. 2017, pp. 58—63. DOI:https://doi.org/10.1109/DIPED.2017.8100558

6. Lee, Y., Kim, S.-J., Park, H. and Lee, B., 2017. Metamaterials and Metasurfaces for Sensor Applications. Sensors, 17(8), pp. 1708—1726. DOI:https://doi.org/10.3390/s17081726

7. Collin, S., 2014. Nanostructure arrays in free-space: optical properties and applications. Rep. Prog. Phys., 77(12), p. 126402. DOI:https://doi.org/10.1088/0034-4885/77/12/126402

8. Zhu, L., Kapraun, J., Ferrara, J. and Chang-Hasnain, C.J., 2015. Flexible photonic metastructures for tunable coloration. Optica, 2(3), pp. 255—258. DOI:https://doi.org/10.1364/OPTICA.2.000255

9. Esfandyarpour, M., Garnett, E.C., Cui, Y., Mcgehee, M.D. and Brongersma, M.L., 2014. Metamaterial mirrors in optoelectronic devices. Nat. Nanotechnol., 9(7), pp. 542—547. DOI:https://doi.org/10.1038/nnano.2014.117

10. Badloe, T., Mun, J. and Rho, J., 2017. Metasurfaces-Based Absorption and Reflection Control: Perfect Absorbers and Reflectors. J. Nanomater., 2017(2), pp. 1—18. DOI:https://doi.org/10.1155/2017/2361042

11. Eggleston, M.S., Messer, K., Zhang, L., Yablonovitch, E. and Wu, M.C., 2015. Optical antenna enhanced spontaneous emission. Proc. Natl. Acad. Sci. USA, 112(6), pp. 1704—1709. DOI:https://doi.org/10.1073/pnas.1423294112

12. Li, D.C., Boone, F., Bozzi, M., Perregrini, L. and Wu, K., 2008. Concept of Virtual Electric/Magnetic Walls and its Realization with Artificial Magnetic Conductor Technique. IEEE Microwave Wireless Compon. Lett., 18(11), pp. 743—745. DOI:https://doi.org/10.1109/LMWC.2008.2005229

13. Jahani, S. and Jacob, Z., 2016. All-dielectric metamaterials. Nat. Nanotechnol., 11(1), pp. 23—36. DOI:https://doi.org/10.1038/nnano.2015.304

14. Shestopalov, V.P., Litvinenko, L.N., Masalov, S.A. and Sologub, V.G., 1973. Diffraction of waves by gratings. Kharkiv, Ukraine: Kharkov State Univ. Publ. (in Russian).

15. Jull, E. and Ebbeson, G., 1977. The reduction of interference from large reflecting surfaces. IEEE Trans. Antennas Propag., 25(4), pp. 565—570. DOI:https://doi.org/10.1109/TAP.1977.1141640

16. Masalov, S.A. and Sirenko, Yu.K., 1980. Excitation of reflecting lattices by a plane wave in the autocollimation mode. Radiophys. Quantum Electron., 23(4), pp. 332—338. DOI: https://doi.org/10.1007/BF01057642

17. Hard, T.M., 1970. Laser Wavelength Selection and Output Coupling by a Grating. Appl. Opt., 9(8), p. 1825—1830. DOI:https://doi.org/10.1364/AO.9.001825

18. Lotem, H., 1994. Littrow-mounted diffraction grating cavity. Appl. Opt., 33(6), pp. 930—934. DOI:https://doi.org/10.1364/AO.33.000930

19. Gribovsky, A.V. and Yeliseyev, O.A., 2014. Nonspecular reflection of Gaussian wave beams on a two-dimensional periodic array with shorted waveguides of rectangular cross-section. J. Opt., 16(3), p. 035701. DOI:https://doi.org/10.1088/2040-8978/16/3/035701

20. Litchinitser, N.M. and Sun, J., 2015. Optical meta-atoms: Going nonlinear. Science, 350(6264), pp. 1033—1034. DOI:https://doi.org/10.1126/science.aad7212

21. Boyd, R.W., 2019. Nonlinear optics. Amsterdam: Academic Press.

22. Prosvirnin, S.L., Khardikov, V.V., Domina, K.L., Maslovskiy, O.A., Kochetova, L.A. and Yachin, V.V., 2011. Non-specular reflection by a planar resonant metasurface. Preprint. http://arxiv.org/abs/2103.01010.

23. Van de Groep, J. and Polman, A., 2013. Designing dielectric resonators on substrates: Combining magnetic and electric resonances. Opt. Express, 21(22), pp. 26285—26302. DOI:https://doi.org/10.1364/OE.21.026285

24. Ene-Dobre, M., Banciu, M.G., Nedelcu, L., Stoica, G., Busuioc, C. and Alexandru, H.V., 2011. Microwave antennas based on Ba1–xPbxNd2Ti5O14. J. Optoelectron. Adv. Mater., 13(10), pp. 1298—1304.

25. Dinu, M., Quochi, F. and Garcia, H., 2003. Third-order nonlinearities in silicon at telecom wavelengths. Appl. Phys. Lett., 82(18), pp. 2954—2956. DOI:https://doi.org/10.1063/1.1571665

26. Gholami, F., Zlatanovic, S., Simic, A., Liu, L., Borlaug, D., Alic, N., Nezhad, M.P., Fainman, Y. and Radic, S., 2011. Third-order nonlinearity in silicon beyond 2350 nm. Appl. Phys. Lett., 99(8), p. 081102. DOI:https://doi.org/10.1063/1.3630130

27. Wang, T., Venkatram, N., Gosciniak, J., Cui, Y., Qian, G., Ji, W. and Tan, D.T.H., 2013. Multi-photon absorption and third-order nonlinearity in silicon at mid-infrared wavelengths. Opt. Express, 21(26), pp. 32192—32198. DOI:https://doi.org/10.1364/OE.21.032192

28. Krasnok, A., Tymchenko, M. and Al`u, A., 2018. Nonlinear metasurfaces: a paradigm shift in nonlinear optics. Mater. Today, 21(1), pp. 8—21. DOI:https://doi.org/10.1016/j.mattod.2017.06.007

29. Werner, W.S.M., Glantschnig, K. and Ambrosch-Draxl, C., 2009. Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals. J. Phys. Chem. Ref. Data, 38(4), pp. 1013—1092. DOI: https://doi.org/10.1063/1.3243762

30. Prosvirnin, S., Domina, K., Khardikov, V. and Yachin, V., 2021. Non-specular reflection of light controlled by light. In: 2021 IEEE 26th Int. Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED): proc. Tbilisi, Georgia, 08—10 Sept. 2021. DOI:https://doi.org/10.1109/DIPED53165.2021.9552327


Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)