ESTIMATING THE SPECTRAL DENSITY OF FLICKER NOISE OF LOW-NOISE OSCILLATORS AT INFRA-LOW FREQUENCIES

DOI: https://doi.org/10.15407/rpra27.03.229

V. M. Konovalov, K. O. Lukin

Abstract


 

Subject and Purpose. Designers of the research radars intended for detecting manifestations of biological activity of living organisms may be interested in the noise characteristics shown by their oscillators at offsets about 102 Hz or even 103Hz from the carrier frequency. Unfortunately, the producing companies do not practice regular information on noise performance of their products at frequencies below 1 Hz. The present authors have set the goal of deriving an analytical expression for the spectral density of flicker noise which should allow radar engineers estimating the probable noise performance of low-noise oscillators over any frequency range.

Methods and Methodology. A great number of writers considering spectral properties of flicker noise tend to support the assertion that its spectral density increases continuously with a decrease in frequency, following the power law 1/f. Meanwhile, the present authors assume availability of a certain frequencyfmbelow which the spectral density should most likely remain unchanged, even to as low as zero frequency. Also, there is a range of frequencies above which the spectral density of flicker noise remains constant and the total spectral density is determined solely by thermal noise.

Results.The spectral density of noise follows the power law 1/f throughout the range fromfm and up to the point where thermal noise starts to overbalance the flicker noise. The authors have proposed an approximating function to describe the behavior of the averaged spectral density of noise from the oscillator within the entire frequency range.

Conclusions. The results obtained shall allow radio system designers to make estimates of the probable noise performance of low-noise oscillators in any frequency range, using only known reference data provided by the manufacturer.

Manuscript submitted 03.04.2022

Radio phys. radio astron. 2022, 27(3): 229-239

REFERENCES

1. Oven Controlled Crystal Oscillator (OCXO). [viewed: 23.08.2022]. Available from: http://www.nelfc.com/ocxo/index.html#thumb

2. Johnson, J.B., 1925. The Schottky Effect in Low Frequency Circuits. Phys. Rev., 26(1), pp. 71–85. DOI: https://doi.org/10.1103/PhysRev.26.71

3. Voss, R.F., 1979. 1/f (Flicker) Noise: A Brief Review. In: 33rd Annual Symposium on Frequency Control. Atlantic City, NJ, USA. 30 May – 1 June 1979. DOI: https://doi.org/10.1109/FREQ.1979.200297

4. Van der Ziel, A.,1979. Flicker noise in electron devices.Adv. Electron. Electron Phys., 49, pp. 225–297. DOI: https://doi.org/10.1016/S0065-2539(08)60768-4

5. Van der Ziel, A. 1980. History of Noise Research. Adv. Electron. Electron Phys., 50, pp. 351–409. DOI: https://doi.org/10.1016/S0065-2539(08)61066-5

6. Keshner, M.S, 1982. 1/ƒ noise.Proc. IEEE. 70(3), pp. 212–218. DOI: https://doi.org/10.1109/PROC.1982.12282

7. Bochkov, G.N., Kuzovlev, Yu.E., 1983. New in 1/f-noise research. Phys.-Usp., 141(1)(in Russian). DOI: https://doi.org/10.3367/UFNr.0141.198309d.0151

8. Zhvirblis, V.E.,1983. The mystery of flicker noise. Znanie – sila, 9, pp. 36–39 (in Russian).

9. Kogan, Sh.M., 1985. Low-frequency current noise with spectrum type 1/f in solids. Phys.-Usp., 145(2)(in Russian). DOI: https://doi.org/10.3367/UFNr.0145.198502d.0285

10. Handel, P.H.; Chung, A.L., 1993.Noise in Physical Systems and 1/f Fluctuations. New York: American Institute of Physics Publ.

11. Josephson, B.D., 1995. A Trans-human source for music? In: Pylkkänen, P. and Pylkkö P. eds., 1995. New Directions in Cognitive Science. Finnish Artificial Intelligence Society. Saariselkä 4–9 Aug. 1995. Helsinki, pp. 280–285.

12. Ciofi, C., Diligenti, A., and Neri, B., 1995.Electromigration noise in submicrometric lines. In: Proc. 13th Int. Conf.Noise in Physical Systems and 1/f Fluctuations (ICNF '95).Palanga, Lithuania, 29 May–3 June 1995. Singapore: World Scientific, pp. 618–621.

13. Zhigalsky, G.P., 1997.1/f noise and nonlinear effects in thin metal covers.Phys.-Usp., 167(6), pp. 623–648(in Russian). DOI: https://doi.org/10.1070/PU1997v040n06ABEH000246

14. Hajimiri, A. and Lee, T.H., 1998. General Theory of Phase Noise in Electrical Oscillators. IEEE J. Solid-State Circuits, 33(2), pp.179–194. DOI: https://doi.org/10.1109/4.658619

15. Hajimiri A., Limotyrakis, S. and Lee, T.H.,Jitter and Phase Noise in Ring Oscillators. IEEE J. Solid-State Circuits, 34(6), pp.790–804. DOI: https://doi.org/10.1109/4.766813

16. Handel, P.H. 2000. The General Nature of Fundamental 1/f Noise in Oscillators and in the High Technology Domain.In: Lecture notes in physics, 550, pp. 232–264. DOI: https://doi.org/10.1007/3-540-45463-2_12

17. Milotti, E., 2002.1/f noise: a pedagogical review. [viewed: 23.08.2022]. Available from: arXiv:physics/0204033. https://www.researchgate.net/publication/2167452_1f_Noise_A_pedagogical_review.

18. Norton, M.P., Karczub, D.G., 2003.Fundamentals of noise and vibration analysis for engineers. 2nd ed. Cambridge, UK: Cambridge University Press.DOI: https://doi.org/10.1017/CBO9781139163927

19. Mukherjee, Ja., Roblin, P., Akhtar, S., 2007. An Analytic Circuit-Based Model for White and Flicker Phase Noise in LC Oscillators. IEEE Trans. Circuits Syst. I Regul. Pap., 54(7), pp. 1584–1598. DOI: https://doi.org/10.1109/TCSI.2007.898673

20. Ward, L.M. and Greenwood, P.E., 2007. 1/f noise. Scholarpedia, 2(12), pp. 1537.DOI: 10.4249/scholarpedia.1537. DOI: https://doi.org/10.4249/scholarpedia.1537

21. Cao, T., Wisland, D., Lande, T., Moradi, F., 2009. A bulk-controlled ring-VCO with 1/f-noise reduction for frequency ΔΣ modulator.In: 2009MIXDES: 16th Int. Conf. Mixed Design of Integrated Circuits & Systems (MIXDES '09): proc. Lodz, Poland, 25–27 June 2009.

22. Chen Sh.-M., Fang Y.-K., JuangF.-R.,Chen C.-C., Liu S.; Kuo C.-W., Chao C.-P.;Tseng H.-C., 2011. A Low-Flicker Noise Gate-Controlled Lateral–Vertical Bipolar Junction Transistor Array With 55-nm CMOS Technology. IEEE Trans. Electron Devices, 58(10), pp. 3276–3282. DOI: https://doi.org/10.1109/TED.2011.2161312

23. Kendal, W.S., Jørgensen, B.R., 2011. Tweedie convergence: a mathematical basis for Taylor’s power law, 1/f noise and multifractality. Phys. Rev. E, 84(6),p. 066120. DOI:https://doi.org/10.1103/PhysRevE.84.066120

24. Pepe, F., Bonfanti, A., Levantino, S., Lacaita, A.L., 2014.Impact of non-quasi-static effects on 1/f3 phase noise in a 1.9-to-2.6 GHz oscillator. In: Proc. 2014IEEE Radio Frequency Integrated Circuits Symposium. Tampa, FL, USA, 1–3 June 2014, pp. 425–428. DOI: https://doi.org/10.1109/RFIC.2014.6851758

25. Ioannidis, E.G., Theodorou, C.G., Karatsori, T.A., Haendler, S., Dimitriadis, C.A., and Ghibaudo, G., 2015.Drain-Current Flicker Noise Modeling in nMOSFETs From a 14-nm FDSOI Technology. IEEE Trans. Electron Devices, 62(5), pp. 1574–1579. DOI: https://doi.org/10.1109/TED.2015.2411678

26. Kuzovlev, Yu.E., 2015. Why nature needs 1/f noise. Phys. Usp., 58(7), pp. 719—729. DOI: https://doi.org/10.3367/UFNe.0185.201507d.0773


Keywords


flicker noise; 1/f noise; color noise; low-noise oscillators; bioactivity; bio-radar

Full Text:

PDF


Creative Commons License

Licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) .