METHODS OF RADIO FREQUENCY INTERFERENCE MITIGATION ON THE STAGE OF PRELIMINARY PROCESSING OF RECEIVED SIGNALS
Abstract
Subject and Purpose.Methods for computer processing of radio astronomical signals observed with space objects at low frequencies are given. The aim of this paper is to improve the current methods and use their combinations for cleaning records from radio interference of natural and artificial origin in the frequency-time domain, as well as to discuss advantages and disadvantage of the methods.
Methods and Methodology.In the study of records obtained with radio astronomical observations there is a common feature of received signals from space sources, which consists in a significant contribution of radio interference. Having sufficient experience on possible types of interference and distortion of signals on the way of their propagation, the efficiency of suggested procedures, clearing radio signal interference in the frequency-time domain by a combination of different approaches in dependence from typical features of signals withinvestigated space objects, is shown.
Results. The developed methods of extracting space signals against the background of interference allow one to get unique data on the sources of radio emission in astrophysical phenomena. On the one hand, software tools make it possible to detect very weak events against the background of radio frequency interference. On the other hand, they allow one to measureemission parameters based on the most statistically complete set of events.
Conclusions.The results obtained in this work manifest that there is no universal way to overcome any obstacle in the records of radio astronomical observations because of radio interference. In addition, even if the most appropriate method is applied, it often requires pre-adjustment of the corresponding parameters on which the analysis of physical parameters of radio emission in the area of generation depends. But if such a space signal at the radio records is not very spoiled by interference, the use of considered methods can be successful and useful.
Manuscript submitted 02.06.2022
Radio phys. radio astron. 2022, 27(4): 268-283
REFERENCES
Konovalenko, A., Sodin, L., Zakharenko, V., Zarka, P., Ulyanov, O., Sidorchuk, M., Stepkin, S., Tokarsky, P., Melnik, V., Kalinichenko, N., Stanislavsky, A., Koliadin, V., Shepelev, V., Dorovskyy, V., Ryabov, V., Koval, A., Bubnov, I., Yerin, S., Gridin, A., Kulishenko, V., Reznichenko, A., Bortsov, V., Lisachenko, V., Reznik, A., Kvasov, G., Mukha, D., Litvinenko, G., Khristenko, A., Shevchenko, V.V., Shevchenko, V.A., Belov, A., Rudavin, E., Vasylieva, I., Miroshnichenko, A., Vasilenko, N., Olyak, M., Mylostna, K., Skoryk, A., Shevtsova, A., Plakhov, M., Kravtsov, I., Volvach, Y., Lytvinenko, O., Shevchuk, N., Zhouk, I., Bovkun, V., Antonov, A., Vavriv, D., Vinogradov, V., Kozhin, R., Kravtsov, A., Bulakh, E., Kuzin, A., Vasilyev, A., Brazhenko, A., Vashchishin, R., Pylaev, O., Koshovyy, V., Lozinsky, A., Ivantyshin, O., Rucker, H.O., Panchenko, M., Fischer, G., Lecacheux, A., Denis, L., Coff re, A., Grießmeier, J.-M., Tagger, M., Girard, J., Charrier, D., Briand, C. and Mann, G., 2016. Th e modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron., 42(1), pp. 11—48. DOI: https://doi.org/10.1007/s10686-016-9498-x
Konovalenko, O.O., Zakharenko, V.V., Kalinichenko, M.M., Melnik, V.M., Sidorchuk, M.А., Stanislavsky, A.A., Stepkin, S.V., and Ulyanov, O.М.,2019. Decameter Wavelength .Radio Emission оf the Universe. Radio Phys. Radio Astron., 24(1), pp. 3—43 (in Ukrainian). DOI: https://doi.org/10.15407/rpra24.01.003
Konovalenko, A.A., 2005. Low-Frequency Radio Astronomy Prospects. Radio Phys. Radio Astron., 10(5), pp. 86—114 (in Russian).
Baan, W.A., Fridman, P.A., and Millenaar, R.P., 2004. Radio frequency interference mitigation at the Westerbork synthesis radio telescope: algorithms, Test observations, and System implementation. Astrophys. J., 128, pp. 933—949. DOI: https://doi.org/10.1086/422350
Winkel, B., Kerp, J., and Stanko, S., 2007. RFI detection by automated feature extraction and statistical analysis. Astron. Nachr., 328(1), pp. 68—79. DOI:https://doi.org/10.1002/asna.200610661
Offringa, A.R., De Bruyn, A.G., Biehl, M., Zaroubi, S., Bernardi, G., and Pandey, V.N., 2010. Post-correlation radio frequency interference classification methods. Mon. Not. R. Astron. Soc., 405(1), pp. 155—167. DOI: https://doi.org/10.1111/j.1365-2966.2010.16471.x
Konovalenko, A.А., Sokolov, K.P., and Stepkin, S.V., 1997. Determination of Optimum Operating Frequencies for Observations with UTR-2 Radio Telescope in the Sky Surveying Mode. Radio Phys. Radio Astron., 2(2), pp. 188—198 (in Russian).
Ryabov, V.B., Vavriv, D.M., Zarka, P., Ryabov, B.P., Kozhin, R., Vinogradov, V.V., and Denis, L., 2010. A low-noise, high dynamic-range, digital receiver for radio astronomy applications: an efficient solution for observing radio-bursts from Jupiter, the Sun, pulsars, and other astrophysical plasmas below 30 MHz. Astron. Astrophys., 510, id. A16, 13 p. DOI: https://doi.org/10.1051/0004-6361/200913335
Zakharenko, V., Konovalenko, A.A., Zarka, P., Ulyanov, O., Sidorchuk, M., Stepkin, S., Koliadin, V., Kalinichenko, N., Stanislavsky, A., Dorovskyy, V., Shepelev, V., Bubnov, I., Yerin, S., Melnik, V., Koval, A., Shevchuk, N., Vasylieva, I., Mylostna, K., Shevtsova, A., Skoryk, A., Kravtsov, I., Volvach, Y., Plakhov, M., Vasilenko, N., Vasylkivsky, I. Y., Vavriv, D., Vinogradov, V., Kozhin, R., Kravtsov, A., Bulakh, E., Kuzin, A., Vasilyev, A., Ryabov, V., Reznichenko, A., Bortsov, V., Lisachenko, V., Kvasov, G., Mukha, D., Litvinenko, G., Brazhenko, A., Vashchishin, R., Pylaev, O., Koshovyy, V., Lozinsky, A., Ivantyshyn, O., Rucker, H.O., Panchenko, M., Fischer, G., Lecacheux, A., Denis, L., Coff re, A., and Grießmeier, J.-M., 2016. Digital Receivers for Low-Frequency Radio Telescopes UTR2, URAN, GURT. J. Astron. Instrum., 5(4), id. 1641010. DOI: https://doi.org/10.1142/S2251171716410105
Abranin, E.P., Bruk, Yu.M., Zakharenko, V.V., and Konovalenko, O.O., 1997. Structure and parameters of new system of antenna amplifi cation of radio telescope UTR-2. Radio Phys. Radio Astron., 2(1), pp. 95—103 (in Russian).
Luwel, K., Beem, A.L., Onghena, P., and Verschaff el, L., 2001. Using segmented linear regression models with unknown change points to analyze strategy shift s in cognitive tasks. Behav. Res. Methods Instrum. Comput., 33(4), pp. 470—478. DOI: https://doi.org/10.3758/BF03195404
Whittaker, E.T., 1922. On a new method of graduation. Proc. Edinburgh Math. Soc., 41, pp. 63—75. DOI: https://doi.org/10.1017/S0013091500077853
Eilers, P.H.C., 2003. A perfect smoother. Anal. Chem., 75(14), pp. 3631—3636. DOI: https://doi.org/10.1021/ac034173t
Baek, S.-J., Park, A., Ahn, Y.-J. and Choo, J., 2015. Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst, 140(1), pp. 250—257. DOI:
https://doi.org/10.1039/C4AN01061BZeng, Q., Chen, X., Li, X., Han, J.L., Wang, C., Zhou, D.J., and Wang, T., 2021. Radio frequency interference mitigation based on the ArPLS and SumTh reshold method. Mon. Not. R. Astron. Soc., 500(3), pp. 2969—2978. DOI:https://doi.org/10.1093/mnras/staa2551
Ford, J., and Buch, K., 2014. RFI mitigation techniques in radio astronomy. In: 2014 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2014). Quebec City, QC, Canada, 13—18 July 2014. DOI:
https://doi.org/10.1109/IGARSS.2014.6946399Peck, L.W., and Fenech, D.M., 2012. Reduction and calibration pipelines for e-MERLIN and COBRaS. In: 11th Europ. VLBI Network Symp. & Users Meeting (11th EVN Symp.). Bordeaux, France, 9—12 Oct. 2012. DOI: https://doi.org/10.22323/1.178.0103
Baan, W., 2011. RFI mitigation in radio astronomy. In: 2011 XXXth URSI General Assembly and Scientific Symposium (URSI GASS 2011). Istanbul, Turkey, 13—20 Aug. 2011. DOI: https://doi.org/10.1109/URSIGASS.2011.6051248
Basseville, M., and Nikiforov, I., 1993. Detection of Abrupt Changes: Theory and Applications. Englewood Cliffs: Prentice-Hall, NJ, USA.
Yang, Z., Yu, C., Xiao, J., and Zhang, B., 2020. Deep residual detection of radio frequency interference for FAST. Mon. Not. R. Astron. Soc., 492(1), pp. 1421—1431. DOI: https://doi.org/10.1093/mnras/stz3521
Vasylieva, I.Y., Zakharenko, V.V., Zarka, P., Ulyanov, O.M., Shevtsova, A.I., and Seredkina, A.A., 2013. Data Processing Pipeline for Decameter Pulsar/Transient Survey. Odessa Astron. Publ., 26(2), pp. 159—161. DOI: 10.18524/1810-4215.2013.26.82470.
Zakharenko, V.V., Ryabov, V.B., Kravtsov, I.P., Mylostna,K.Yu., Kharlanova, V.Yu., Vasylieva, I.Y., Ulyanov, O.M., Konovalenko, O.O., Kalinichenko, M.M., Zarka, P., Rucker, H.O., Fischer, G., Yerin, S.M., Grießmeier, J.-M., Sydorchuk, M.A., Shevtsova, A.I., Skoryk, A.O., Shevchenko, V.A., 2021. Sporadic Radio Emission Of Space Objects At Low-Frequencies. Radio Phys. Radio Astron., 26(2), pp. 99—129. DOI: https://doi.org/10.15407/rpra26.02.099
Cendes, Y., Prasad, P., Rowlinson, A., Wijers, R.A.M.J., Swinbank, J.D., Law, C.J., van der Horst, A.J., Carbone, D., Broderick, J.W., Staley, T.D., Stewart, A.J., Huizinga, F., Molenaar, G., Alexov, A., Bell, M.E., Coenen, T., Corbel, S., Eislöff el, J., Fender, R., Grießmeier, J.-M., Jonker, P., Kramer, M., Kuniyoshi, M., Pietka, M., Stappers, B., Wise, M., and Zarka, P., 2018. RFI flagging implications for short-duration transients. Astron. Comput., 23, pp. 103—114. DOI: https://doi.org/10.1016/j.ascom.2018.04.001
Zakharenko, V.V., Vasylieva, I.Y., Konovalenko, A.A., Ulyanov, O.M., Serylak, M., Zarka, P., Grießmeier, J.-M., Cognard, I., and Nikolaenko, V.S., 2013. Detection of decametre-wavelength pulsed radio emission of 40 known pulsars. Mon. Not. R. Astron. Soc., 431(4), pp. 3624—3641. DOI: https://doi.org/10.1093/mnras/stt470
Vasylieva, I.Y., 2015. Pulsars and transients survey, and exoplanet search at low-frequencies with the UTR-2 radio telescope: methods and fi rst results [online]. PhD Thesis ed. Observatoire de Paris [viewed 19 April 2021]. Available from: https://tel.archives-ouvertes.fr/tel-01246634.
Ross, S.R., 2014. Introduction to Probability and Statistics for Engineers and Scientists. 5th ed. New York: Wiley. DOI: https://doi.org/10.1016/B978-0-12-394811-3.50001-0
Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C., 2000. Image inpainting. In: Proc. 27th Annual Conf. Computer graphics and interactive techniques (SIGGRAPH 2000). New Orleans, LA, USA, 23—28 July 2000, pp. 417—424. DOI: https://doi.org/10.1145/344779.344972
Stanislavsky, A.A., Konovalenko, A.A., Koval, A.A., Dorovskyy, V.V., Zarka, P., and Rucker, H.O., 2015. Coronal magnetic field strength from decameter zebra-pattern observations: Complementarity with band-splitting measurements of an associated Type II burst. Sol. Phys., 290(1), pp. 205—218. DOI: https://doi.org/10.1007/s11207-014-0620-9
Karatzas, I., and Shreve, S.E., 1998. Brownian Motion and Stochastic Calculus. New York: Springer. DOI:
https://doi.org/10.1007/978-1-4612-0949-2Stanislavsky, L.A., Bubnov, I.N., Konovalenko, A.A., Tokarsky, P.L., and Yerin, S.N., 2021. The first detection of the solar U+III association with an antenna prototype for the future lunar observatory. Res. Astron. Astrophys., 21(8), id. 187. DOI: https://doi.org/10.1088/1674-4527/21/8/187
Bubnov, I.N., Konovalenko, A.A., Tokarsky, P.L., Korolev, O.M., Yerin, S.N., and Stanislavsky, L.A., 2021. Creation and approbation of a low-frequency radio astronomy antenna for studies of objects of the Universe from the Moon’s farside. Radio Phys. Radio Astron., 26(3), pp. 197—210. DOI: https://doi.org/10.15407/rpra26.03.197
Keywords
Full Text:
PDF
Licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) .