METHODS OF RADIO FREQUENCY INTERFERENCE MITIGATION ON THE STAGE OF PRELIMINARY PROCESSING OF RECEIVED SIGNALS

DOI: https://doi.org/10.15407/rpra27.04.268

L. A. Stanislavsky

Abstract


Subject and Purpose. Methods for computer processing of radio astronomical signals observed with space objects at low frequencies are given. The aim of this paper is to improve the current methods and use their combinations for cleaning records from radio interference of natural and artificial origin in the frequency-time domain, as well as to discuss advantages and disadvantage of the methods.

Methods and Methodology. In the study of records obtained with radio astronomical observations there is a common feature of received signals from space sources, which consists ina significant contribution of radio interference. Having sufficient experience on possible types of interference and distortion of signals on the way of their propagation, the efficiency of suggested procedures, clearing radio signal interference in the frequency-time domain by a combination of different approaches in dependence from typical features of signals withinvestigated space objects, is shown.

Results. The developed methods of extracting space signals against the background of interference allow one to get unique data on the sources of radio emission in astrophysical phenomena. On the one hand, software tools make it possible to detect very weak events against the background of radio frequency interference. On the other hand, they allow one to measureemission parameters based on the most statistically complete set of events.

Conclusions. The results obtained in this work manifest that there is no universal way to overcome any obstacle in the records of radio astronomical observations because of radio interference. In addition, even if the most appropriate method is applied, it often requires pre-adjustment of the corresponding parameters on which the analysis of physical parameters of radio emission in the area of generation depends. But if such a space signal at the radio records is not very spoiled by interference, the use of considered methods can be successful and useful.

Keywords: radio astronomy observations, RFI mitigation procedures, frequency-time pattern, UTR-2, GURT

Manuscript submitted 02.06.2022

Radio phys. radio astron. 2022, 27(4):268-283

REFERENCES
1. Konovalenko, A., Sodin, L., Zakharenko, V., Zarka, P., Ulyanov, O., Sidorchuk, M., Stepkin, S., Tokarsky, P., Melnik, V., Kalinichenko, N., Stanislavsky, A., Koliadin, V., Shepelev, V., Dorovskyy, V., Ryabov, V., Koval, A., Bubnov, I., Yerin, S., Gridin, A., Kulishenko, V., Reznichenko, A., Bortsov, V., Lisachenko, V., Reznik, A., Kvasov, G., Mukha, D., Litvinenko, G., Khristenko, A., Shevchenko, V.V., Shevchenko, V.A., Belov, A., Rudavin, E., Vasylieva, I., Miroshnichenko, A., Vasilenko, N., Olyak, M., Mylostna, K., Skoryk, A., Shevtsova, A., Plakhov, M., Kravtsov, I., Volvach, Y., Lytvinenko, O., Shevchuk, N., Zhouk, I., Bovkun, V., Antonov, A., Vavriv, D., Vinogradov, V., Kozhin, R., Kravtsov, A., Bulakh, E., Kuzin, A., Vasilyev, A., Brazhenko, A., Vashchishin, R., Pylaev, O., Koshovyy, V., Lozinsky, A., Ivantyshin, O., Rucker, H.O., Panchenko, M., Fischer, G., Lecacheux, A., Denis, L., Coffre, A., Grießmeier, J.-M., Tagger, M., Girard, J., Charrier, D., Briand, C. and Mann, G., 2016. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp. Astron., 42(1), pp. 11—48. DOI: https://doi.org/10.1007/s10686-016-9498-x

2. Konovalenko, O.O., Zakharenko, V.V., Kalinichenko, M.M., Melnik, V.M., Sidorchuk, M.А., Stanislavsky, A.A., Stepkin, S.V., and Ulyanov, O.М.,2019. Decameter Wavelength .Radio Emission оf the Universe. Radio Phys. Radio Astron., 24(1), pp. 3—43 (in Ukrainian). DOI: https://doi.org/10.15407/rpra24.01.003

3. Konovalenko, A.A., 2005. Low-Frequency Radio Astronomy Prospects. Radio Phys. Radio Astron., 10(5), pp. 86—114 (in Russian).
4. Baan, W.A., Fridman, P.A., and Millenaar, R.P., 2004. Radio frequency interference mitigation at the Westerbork synthesis radio telescope: algorithms, Test observations, and System implementation. Astrophys. J., 128, pp. 933—949. DOI:https://doi.org/10.1086/422350

5. Winkel, B., Kerp, J., and Stanko, S., 2007. RFI detection by automated feature extraction and statistical analysis. Astron. Nachr., 328(1), pp. 68—79. DOI: https://doi.org/10.1002/asna.200610661

6. Offringa, A.R., De Bruyn, A.G., Biehl, M., Zaroubi, S., Bernardi, G., and Pandey, V.N., 2010. Post-correlation radio frequency interference classification methods. Mon. Not. R. Astron. Soc., 405(1), pp. 155—167. DOI:https://doi.org/10.1111/j.1365-2966.2010.16471.x

7. Konovalenko, A.А., Sokolov, K.P., and Stepkin, S.V., 1997. Determination of Optimum Operating Frequencies for Observations with UTR-2 Radio Telescope in the Sky Surveying Mode. Radio Phys. Radio Astron., 2(2), pp. 188—198 (in Russian).

8. Ryabov, V.B., Vavriv, D.M., Zarka, P., Ryabov, B.P., Kozhin, R., Vinogradov, V.V., and Denis, L., 2010. A low-noise, high dynamic-range, digital receiver for radio astronomy applications: an efficient solution for observing radio-bursts from Jupiter, the Sun, pulsars, and other astrophysical plasmas below 30 MHz. Astron. Astrophys., 510, id. A16, 13 p. DOI:https://doi.org/10.1051/0004-6361/200913335

9. Zakharenko, V., Konovalenko, A.A., Zarka, P., Ulyanov, O., Sidorchuk, M., Stepkin, S., Koliadin, V., Kalinichenko, N., Stanislavsky, A., Dorovskyy, V., Shepelev, V., Bubnov, I., Yerin, S., Melnik, V., Koval, A., Shevchuk, N., Vasylieva, I., Mylostna, K., Shevtsova, A., Skoryk, A., Kravtsov, I., Volvach, Y., Plakhov, M., Vasilenko, N., Vasylkivsky, I. Y., Vavriv, D., Vinogradov, V., Kozhin, R., Kravtsov, A., Bulakh, E., Kuzin, A., Vasilyev, A., Ryabov, V., Reznichenko, A., Bortsov, V., Lisachenko, V., Kvasov, G., Mukha, D., Litvinenko, G., Brazhenko, A., Vashchishin, R., Pylaev, O., Koshovyy, V., Lozinsky, A., Ivantyshyn, O., Rucker, H.O., Panchenko, M., Fischer, G., Lecacheux, A., Denis, L., Coffre, A., and Grießmeier, J.-M., 2016. Digital Receivers for Low-Frequency Radio Telescopes UTR-2, URAN, GURT. J. Astron. Instrum., 5(4), id. 1641010. DOI:https://doi.org/10.1142/S2251171716410105

10. Abranin, E.P., Bruk, Yu.M., Zakharenko, V.V., and Konovalenko, O.O., 1997. Structure and parameters of new system of antenna amplification of radio telescope UTR-2. Radio Phys. Radio Astron., 2(1), pp. 95—103 (in Russian).

11. Luwel, K., Beem, A.L., Onghena, P., and Verschaff el, L., 2001. Using segmented linear regression models with unknown change points to analyze strategy shifts in cognitive tasks. Behav. Res. Methods Instrum. Comput., 33(4), pp. 470—478. DOI:https://doi.org/10.3758/BF03195404

12. Whittaker, E.T., 1922. On a new method of graduation. Proc. Edinburgh Math. Soc., 41, pp. 63—75. DOI:https://doi.org/10.1017/S0013091500077853

13. Eilers, P.H.C., 2003. A perfect smoother. Anal. Chem., 75(14), pp. 3631—3636. DOI: https://doi.org/10.1021/ac034173t

14. Baek, S.-J., Park, A., Ahn, Y.-J. and Choo, J., 2015. Baseline correction using asymmetrically reweighted penalized least squares smoothing. Analyst, 140(1), pp. 250—257. DOI:https://doi.org/10.1039/C4AN01061B

15. Zeng, Q., Chen, X., Li, X., Han, J.L., Wang, C., Zhou, D.J., and Wang, T., 2021. Radio frequency interference mitigation based on the ArPLS and SumThreshold method. Mon. Not. R. Astron. Soc., 500(3), pp.  2969—2978. DOI: https://doi.org/10.1093/mnras/staa2551

16. Ford, J., and Buch, K., 2014. RFI mitigation techniques in radio astronomy. In: 2014 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS 2014). Quebec City, QC, Canada, 13—18 July 2014. DOI:https://doi.org/10.1109/IGARSS.2014.6946399

17. Peck, L.W., and Fenech, D.M., 2012. Reduction and calibration pipelines for e-MERLIN and COBRaS. In: 11th Europ. VLBI Network Symp. & Users Meeting (11th EVN Symp.). Bordeaux, France, 9—12 Oct. 2012. DOI: https://doi.org/10.22323/1.178.0103

18. Baan, W., 2011. RFI mitigation in radio astronomy. In: 2011 XXXth URSI General Assembly and Scientific Symposium (URSI GASS 2011). Istanbul, Turkey, 13—20 Aug. 2011. DOI:https://doi.org/10.1109/URSIGASS.2011.6051248

19. Basseville, M., and Nikiforov, I., 1993. Detection of Abrupt Changes: Theory and Applications. Englewood Cliffs: Prentice-Hall, NJ, USA.

20. Yang, Z., Yu, C., Xiao, J., and Zhang, B., 2020. Deep residual detection of radio frequency interference for FAST. Mon. Not. R. Astron. Soc., 492(1), pp. 1421—1431. DOI:https://doi.org/10.1093/mnras/stz3521

21. Vasylieva, I.Y., Zakharenko, V.V., Zarka, P., Ulyanov, O.M., Shevtsova, A.I., and Seredkina, A.A., 2013. Data Processing Pipeline for Decameter Pulsar/Transient Survey. Odessa Astron. Publ., 26(2), pp. 159—161. DOI: 10.18524/1810-4215.2013.26.82470

22. Zakharenko, V.V., Ryabov, V.B., Kravtsov, I.P., Mylostna,K.Yu., Kharlanova, V.Yu., Vasylieva, I.Y., Ulyanov, O.M., Konovalenko, O.O., Kalinichenko, M.M., Zarka, P., Rucker, H.O., Fischer, G., Yerin, S.M., Grießmeier, J.-M., Sydorchuk, M.A., Shevtsova, A.I., Skoryk, A.O., Shevchenko, V.A., 2021. Sporadic Radio Emission Of Space Objects At Low-Frequencies. Radio Phys. Radio Astron., 26(2), pp. 99—129. DOI:https://doi.org/10.15407/rpra26.02.099

23. Cendes, Y., Prasad, P., Rowlinson, A., Wijers, R.A.M.J., Swinbank, J.D., Law, C.J., van der Horst, A.J., Carbone, D., Broderick, J.W., Staley, T.D., Stewart, A.J., Huizinga, F., Molenaar, G., Alexov, A., Bell, M.E., Coenen, T., Corbel, S., Eislöffel, J., Fender, R., Grießmeier, J.-M., Jonker, P., Kramer, M., Kuniyoshi, M., Pietka, M., Stappers, B., Wise, M., and Zarka, P., 2018. RFI flagging implications for short-duration transients. Astron. Comput., 23, pp. 103—114. DOI:https://doi.org/10.1016/j.ascom.2018.04.001

24. Zakharenko, V.V., Vasylieva, I.Y., Konovalenko, A.A., Ulyanov, O.M., Serylak, M., Zarka, P., Grießmeier, J.-M., Cognard, I., and Nikolaenko, V.S., 2013. Detection of decametre-wavelength pulsed radio emission of 40 known pulsars. Mon. Not. R. Astron. Soc., 431(4), pp. 3624—3641. DOI:https://doi.org/10.1093/mnras/stt470

25. Vasylieva, I.Y., 2015. Pulsars and transients survey, and exoplanet search at low-frequencies with the UTR-2 radio telescope: methods and first results [online]. PhD Thesis ed. Observatoire de Paris [viewed 19 April 2021]. Available from: https://tel.archives-ouvertes.fr/tel-01246634

26. Ross, S.R., 2014. Introduction to Probability and Statistics for Engineers and Scientists. 5th ed. New York: Wiley. DOI:https://doi.org/10.1016/B978-0-12-394811-3.50001-0

27. Bertalmio, M., Sapiro, G., Caselles, V., and Ballester, C., 2000. Image inpainting. In: Proc. 27th Annual Conf. Computer graphics and interactive techniques (SIGGRAPH 2000). New Orleans, LA, USA, 23—28 July 2000, pp. 417—424. DOI:https://doi.org/10.1145/344779.344972

28. Stanislavsky, A.A., Konovalenko, A.A., Koval, A.A., Dorovskyy, V.V., Zarka, P., and Rucker, H.O., 2015. Coronal magnetic field strength from decameter zebra-pattern observations: Complementarity with band-splitting measurements of an associated Type II burst. Sol. Phys., 290(1), pp. 205—218. DOI: https://doi.org/10.1007/s11207-014-0620-9

29. Karatzas, I., and Shreve, S.E., 1998. Brownian Motion and Stochastic Calculus. New York: Springer. DOI:https://doi.org/10.1007/978-1-4612-0949-2

30. Stanislavsky, L.A., Bubnov, I.N., Konovalenko, A.A., Tokarsky, P.L., and Yerin, S.N., 2021. The first detection of the solar U+III association with an antenna prototype for the future lunar observatory. Res. Astron. Astrophys., 21(8), id. 187. DOI:https://doi.org/10.1088/1674-4527/21/8/187

31. Bubnov, I.N., Konovalenko, A.A., Tokarsky, P.L., Korolev, O.M., Yerin, S.N., and Stanislavsky, L.A., 2021. Creation and approbation of a low-frequency radio astronomy antenna for studies of objects of the Universe from the Moon’s farside. Radio Phys. Radio Astron., 26(3), pp. 197—210. DOI:https://doi.org/10.15407/rpra26.03.197


Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)