A. A. Stanislavsky, A. A. Koval, I. N. Bubnov, A. I. Brazhenko


Subject and Purpose. Results are presented of the solar corona investigations performed with the world famous Ukrainian radio telescopes. The work has been aimed at offering a consistent review of recent achievements in observations of a variety of low-frequency radio emissions from the Sun.

Methods and Methodology. The studies of the quiet (thermal) and sporadic (burst-like) radio emissions from the Sun have been carried out with the decameter-wavelength radio telescopes UTR-2, GURT and URAN-2. Specific features of the low-frequency solar radio emissions from a variety of sources are presented, with characterization of the optimized techniques that were applied in each case for evaluating physical parameters of the corona in the areas of decameter-wavelength radio wave generation.

Results. The analysis of temporal, frequency and spatial characteristics of solar radio emissions has allowed suggesting a number of models for the coronal electron density distribution, and evaluating magnetic field strengths in the corona. Also, our experimental results have proven to be consistent with the observational data obtained in different frequency ranges and with the use of both ground based and space-borne instruments.

Conclusions. The radio observations performed with Ukrainian radio telescopes have permitted studying, with high temporal, frequency and spatial resolutions, solar radio frequency emissions from various localized sources. Along with the large effective area and high sensitivity of the antennas, this permits application of a wide range of methods and tools aimed at detecting and analyzing solar bursts, of both strong and weak intensity, against the background of terrestrial interference of natural or artificial origin.

Keywords: the Sun, decameter-wavelength radio emission, radio bursts, solar corona, UTR-2, URAN-2, GURT

Manuscript submitted 02.06.2022

Radio phys. radio astron. 2023, 28(2): 095-116


1. Stanislavsky, A.A., Abranin, E.P., Konovalenko, A.A., and Koval, A.A., 2011. Heliograph of the UTR-2 radiotelescope. Part I: General scheme. Radio Phys. Radio Astron., 2(3), pp. 197—204. DOI:

2. Abranin, E.P., Stanislavsky, A.A., Koval, A.A., and Konovalenko, A.A., 2011. Heliograph of the UTR-2 radiotelescope. Part II: Design features. Radio Phys. Radio Astron., 2(4), pp. 299—305. DOI:

3. Koval, A.A., Konovalenko, A.A., and Stanislavsky, A.A., 2011. A new heliograph of the UTR-2 radio telescope: design and perfor- mance. In: 2011 XXXth URSI General Assembly and Scientific Symposium Proceedings. Istanbul, Turkey, 13–20 Aug. 2011. DOI:

4. Konovalenko, A.A., Stanislavsky, A.A., Koval, A.A., and Abranin, E.P., 2012. Heliographofthe UTR-2 radiotelescope. III. Observations. Radio Phys. Radio Astron., 3(1), pp. 1—5. DOI:

5. Stanislavsky, A.A., Koval, A.A., Konovalenko, A.A., and Abranin, E.P., 2011. Heliograph of the UTR-2 radiotelescope. https: //arxiv. org/abs/1112.1044. DOI:

6. Stanislavsky, A.A., Konovalenko, A.A., Koval, A.A., and Volvach, Ya.S., 2018. An upgrade of the UTR-2 radio telescope to a mul- tifrequency radio heliograph. Sun Geosph., 13(1), pp. 21—24. DOI:

7. Stanislavsky, A.A., Koval, A.A., and Konovalenko, A.A., 2013. Low-frequency heliographic observations of the quiet Sun corona. Astronom. Nachr., 334(10), pp. 1086—1092. DOI:

8. Koval, A.A., Stanislavsky, A.A., Konovalenko, A.A., and Volvach, Ya.S., 2014. Tracking Type III radio burst sources in the solar corona by heliographic means. Odessa Astron. Publ., 27(1), pp. 74—75.

9. Koval, A.A., Stanislavsky, A.A., Chen, Y., Feng, Sh., Konovalenko, A.A., and Volvach, Ya.S., 2016. A decameter stationary type IV burst in imaging observations on the 6th of September 2014. Astrophys. J., 826(2), id. 125. DOI:

10. Koval, A.A., 2011. Analysis of quiet-Sun radio observations using the decametric telescope UTR-2. Astronomical School’s Report, 7(1), pp. 34—41 (in Russian). DOI:

11. Brazhenko, A.I., Koval, A.A., Konovalenko, A.A., Stanislavsky, A.A., Abranin, E.P., Dorovskyy, V.V., Melnik, V.M., Vashchishin, R.V., Frantsuzenko, A.V., and Borysyuk, O.V., 2012. Peculiarity of continuum emission from upper corona of the Sun at decameter wavelengths. Radio Phys. Radio Astron., 3(3), pp. 187—196. DOI:

12. Konovalenko, O.O., Koshovyy, V.V., Lozynskyy, A.B., Stanislavsky, A.A., Shepelev, V.A., Ivantyshyn, O.L., Kharchenko, B.S., Lozynskyy, R.A., Brazhenko, A.I., Abranin, E.P., and Koval, A.A., 2012. Quiet Sun observations by the URAN-2 and URAN-3 de- cameter radio telescopes during the solar eclipse of August 1, 2008. Radio Phys. Radio Astron., 17(4), pp. 295—300 (in Ukrainian). DOI:

13. Stanislavsky, A.A., and Koval, A.A., 2013. Solar corona elliptical model. Radio Phys. Radio Astron., 18(1), pp. 3—11 (in Ukrainian).

14. Stanislavsky, A.A., Konovalenko, A.A., Abranin, E.P., Dorovskyy, V.V., Lecacheux, A., Rücker, H.O., and Zarka, P., 2018. Revisit- ing the frequency drift rates of decameter type III solar bursts observed in July — August 2002. Sol. Phys., 293(11), id. 152. DOI:

15. Stanislavsky, A.A., Konovalenko, A.A., Volvach, Ya.S., and Koval, A.A., 2015, High-frequency cut-off in type III bursts. Odessa Astron. Publ., 28(2), pp. 246—247. DOI:

16. Stanislavsky, A.A., 2016. The role of radio wave propagation effects in the solar corona to interpret the behind-limb bursts. Radio Phys. Radio Astron., 21(1), pp. 3—13. DOI:

17. Stanislavsky, A., Konovalenko, A., Koval, A., Volvach, Y., and Zarka, P., 2016. CMEs and frequency cut-off of solar bursts. Sun Geosph., 11(2), pp. 91—95.

18. Stanislavsky, A.A., Konovalenko, A.A., Volvach, Ya.S., and Koval, A.A., 2017. Brightness temperatures of solar bursts with high-frequency cut-off. In: G. Fischer, G. Mann, M. Panchenko, and P. Zarka, eds. Planetary Radio Emissions VIII. Proc. 8th Int. Workshop on Planetary, Solar and Heliospheric Radio Emissions held at Seggauberg near Graz, Austria, 25—27 Oct. 2016. Vien- na: Austrian Academy of Sciences Press, pp. 391—401. DOI:

19. Stanislavsky, A.A., 2017. Solar type III bursts with high-frequency cut-off. Astron. Nachr., 338(4), pp. 407—412. DOI:

20. Chernov, G.P., Stanislavsky, A.A., Konovalenko, A.A., Abranin, E.P., Dorovsky, V.V., and Rücker, H.O., 2007. Fine structure of decametric type II radio bursts. Astron. Lett., 33(3), pp. 192—202. DOI:

21. Konovalenko, A.A., Stanislavsky, A.A., Abranin, E.P., Dorovsky, V.V., Mel’nik, V.N., Kaiser, M.L., Lecacheux, A., and Rücker, H.O., 2007. Absorption in Burst Emission. Solar Phys., 245(2), pp. 345—354. DOI:

22. Stanislavsky, A.A., Konovalenko, A.A., Koval, A.A., Dorovsky, V.V., Zarka, P., and Rücker, H.O., 2015. What can be interesting in the analysis of crowded solar bursts? Sun Geosph., 10(1), pp. 17—20.

23. Stanislavsky, A.A., Konovalenko, A.A., Koval, A.A., Dorovskyy, V.V., Zarka, P., and Rücker, H.O., 2015. Coronal magnetic field strength from decameter zebra-pattern observations: Complementarity with band-splitting measurements of an associated type II burst. Sol. Phys., 290(1), pp. 205—218. DOI:

24. Koval, A., Karlicky, M., Stanislavsky, A., Wang, B., Barta, M., Gorgutsa, R., 2021.Shock-wave radio probing of solar wind sources in coronal magnetic fields. Astrophys. J., 923(2), id. 255 (10 pp.). DOI:


the Sun; decameter-wavelength radio emission; radio bursts; solar corona; UTR-2; URAN-2; GURT

Full Text:


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)