NEAR-ZONE IONOSPHERIC DISTURBANCES CAUSED BY EXPLOSIVE ERUPTION OF TONGA VOLCANO ON 15 JANUARY 2022

DOI: https://doi.org/10.15407/rpra28.03.212

L. F. Chernogor, Yu. B. Mylovanov

Abstract


Subject and Purpose. The thermal energy of the Tonga volcano reached 3.91018 J, its power amounted to 9.11013 W. The energy and power of the blast waves approached (6.7...7.5) 1018 J and 1011 W, respectively. Ionospheric effects caused by the explosive eruption of the Tonga volcano on January 15, 2022 have received due attention. It was established that the ionospheric disturbances spread over global distances, with the greatest disturbances occurring in the near zone. The aim of the present paper is to describe aperiodic and quasi-periodic disturbances started by the Tonga volcano explosion and occurring in the near ionospheric zone.

Methods and Methodology. To detect ionospheric disturbances generated by the volcanic eruption, temporal variations of the total electron content (TEC) in a vertical column in the ionosphere were analyzed. The total error of the TEC estimation did not exceed 0.1 TECU.

Results. The quantitative characteristics of ionospheric disturbances caused by the explosive eruption of the Tonga volcano have been obtained. It was proved that the appearance of the ionospheric "hole" was caused directly by the volcanic explosion. With dis- tance away from the volcano, the TEC deficit in absolute values decreased from ~10 to ~2.5 TECU. As that was happening, the time taken to form the ionospheric "hole" increased from ~20 to ~100 min. Three groups of disturbances were observed. One group picks out disturbances having an N-shaped profile and caused by a blast wave with a speed exceeding ~1 000 m/s. Another group includes disturbances with a propagation speed within ~340...620 m/s, which is characteristic of atmospheric gravity waves at ionospheric heights. The last group is specified by the disturbance propagation speed within ~110 to 320 m/s. The disturbances of the kind can be generated by tsunamis, Lamb waves and atmospheric gravity waves. The wave disturbance periods varied within ~ 5 to 20 min, the disturbance amplitudes were within 0.5...1.0 TECU.

Conclusions. It has been proven that aperiodic and quasi-periodic ionospheric disturbances in the near zone were caused directly by the explosion of the Tonga volcano.

Keywords: Tonga volcano, ionosphere, total electron content, ionospheric "hole", quasi-periodic disturbances, disturbance parameters

Manuscript submitted 10.12.2022

Radio phys. radio astron. 2023, 28(3): 212-223


REFERENCES

    1. Chernogor, L.F., 2012. Physics and Ecology of Disasters. Monograph. Kharkiv: V.N. Karazin Kharkiv National University Publ.
    2. Chernogor, L.F., 2022. Physical effects of the January 15, 2022, powerful Tonga volcano explosion in the Earth — atmosphere — ionosphere — magnetosphere system. Space Sci. & Technol., 29(2), pp. 54—77 (in Ukrainian). DOI: https://doi.org/10.15407/knit2023.02.054
    3. Chernogor, L.F., Shevelev, M.B., 2022. Infrasonic effect of the explosion of the Tonga super volcano on January 15, 2022. In: Proc. of the XXIIth Int. Young Scientists’ Conf. on Applied Physics. Kyiv, Ukraine, 18—22 Oct. 2022, pp. 126—127.
    4. Chernogor, L.F., 2022. Effects of the Tonga volcano explosion on January 15, 2022. In: Int. Conf. "Astronomy and Space Physics". DOI:
https://doi.org/10.3997/2214-4609.2022580141
Book of Abstracts. Kyiv, Ukraine, 18—21 Oct. 2022, pp. 12—13.
    5. Chernogor, L.F., 2022. The Tonga super-volcano explosion as a subject of applied physics. In: The 18th Int. Conf. on Electronics and Applied Physics APHYS’2022. Kyiv, Ukraine, 18—22 Oct. 2022, pp. 130—131.
    6. Roberts, D.H., Klobuchar, J.A., Fougere, P.F., Hendrickson, D.H., 1982. A large-amplitude traveling ionospheric disturbance pro- duced by the May 18, 1980, explosion of Mount St. Helens. J. Geophys. Res., 87(A8), pp. 6291—6301. DOI: https://doi.org/10.1029/JA087iA08p06291
    7. Liu, C.H, Klostermeyer, J., Yeh, K.C., Jones, T.B., Robinson, T., Holt, O., Leitinger, R., Ogawa, T., Sinno, K., Kato, S., Ogawa, T., Bedard, A.J., Kersley, L., 1982. Global dynamic responses of the atmosphere to the eruption of Mount St. Helens on May 18, 1980. J. Geophys. Res., 87(A8), pp. 6281—6290. DOI: https://doi.org/10.1029/JA087iA08p06281
    8. Igarashi, K., Kainuma, S., Nishimuta, I., Okamoto, S., Kuroiwa, H., Tanaka, T., Ogawa, T., 1994. Ionospheric and atmospheric disturbances around Japan caused by the eruption of Mount Pinatubo on 15 June 1991. J. Atmos. Terr. Phys. 56(9), pp. 1227—1234. DOI: https://doi.org/10.1016/0021-9169(94)90060-4
    9. Cheng, K., Huang, Y.-N., 1992. Ionospheric disturbances observed during the period of Mount Pinatubo eruptions in June 1991. J. Geophys. Res., 97(A11), pp. 16995—17004. DOI: https://doi.org/10.1029/92JA01462
    10. Heki, K., 2006. Explosion energy of the 2004 eruption of the Asama Volcano, central Japan, inferred from ionospheric disturbanc- es. Geophys. Res. Lett., 33(14), id. L14303. DOI: https://doi.org/10.1029/2006GL026249
    11. Dautermann, T., Calais, E., Mattioli, G.S., 2009. Global Positioning System detection and energy estimation of the ionospheric wave caused by the 13 July 2003 explosion of the Soufrière Hills Volcano, Montserrat. J. Geophys. Res., 114(B2), id. B02202. DOI: https://doi.org/10.1029/2008JB005722
    12. Dautermann, T., Calais, E., Lognonn´e, P., Mattioli, G., 2009. Lithosphere-Atmosphere-Ionosphere Coupling after the 2003 Ex- plosive eruption of the Soufriere Hills Volcano, Montserrat. Geophys. J. Int., 179(3), pp. 1537—1546. DOI: https://doi.org/10.1111/j.1365-246X.2009.04390.x
    13. Rozhnoi, A., Hayakawa, M., Solovieva, M., Hobara, Y., Fedun, V., 2014. Ionospheric effects of the Mt. Kirishima volcanic eruption as seen from subionospheric VLF observations. J. Atmos. Sol. Terr. Phys., 107, pp. 54—59. DOI: https://doi.org/10.1016/j.jastp.2013.10.014
    14. Shults, K., Astafyeva, E., Adourian, S., 2016. Ionospheric detection and localization of volcano eruptions on the example of the April 2015 Calbuco events. J. Geophys. Res. Space Phys., 121(10), pp. 303—315. DOI: https://doi.org/10.1002/2016JA023382
    15. Nakashima, Y., Heki, K., Takeo, A., Cahyadi, M.N., Aditiya, A., Yoshizawa K., 2016. Atmospheric resonant oscillations by the 2014 eruption of the Kelud volcano, Indonesia, observed with the ionospheric total electron contents and seismic signals. Earth Planet. Sci. Lett., 434, pp. 112—116. DOI: https://doi.org/10.1016/j.epsl.2015.11.029
    16. Aa, E., Zhang, S.-R., Erickson, P.J., Vierinen, J., Coster, A.J., Goncharenko, L.P., Spicher, A., Rideout, W., 2022. Significant Iono- spheric Hole and Equatorial Plasma Bubbles After the 2022 Tonga Volcano Eruption. Space Weather., 20(7), id. e2022SW003101. DOI: https://doi.org/10.1029/2022SW003101
    17. Aa, E., Zhang, S.-R., Wang, W., Erickson, P.J., Qian, L., Eastes, R., Harding, B.J., Immel, T.J., Karan, D.K., Daniell, R.E., Coster, A.J., Goncharenko, L.P., Vierinen, J., Cai, X., Spicher, A., 2022. Pronounced Suppression and X-Pattern Merging of Equatorial Ioniza- tion Anomalies After the 2022 Tonga Volcano Eruption. J. Geophys. Res. Space Phys., 127(6), id. e2022JA030527. DOI: https://doi.org/10.1029/2022JA030527
    18. Astafyeva, E., Maletckii, B., Mikesell, T.D., Munaibari, E., Ravanelli, M., Coisson, P., Manta, F., Rolland, L., 2022. The 15 January 2022 Hunga Tonga eruption history as inferred from ionospheric observations. Geophys. Res. Lett., 49(10), id. e2022GL098827. DOI: https://doi.org/10.1029/2022GL098827
    19. Chen, C.-H., Zhang, X., Sun, Y.-Y., Wang, F., Liu, T.-C., Lin, C.-Y., Gao, Y., Lyu, J., Jin, X., Zhao, X., Cheng, X., Zhang, P., Chen, Q., Zhang, D., Mao, Z., Liu, J.-Y., 2022. Individual Wave Propagations in Ionosphere and Troposphere Triggered by the Hunga Ton- ga-Hunga Ha’apai Underwater Volcano Eruption on 15 January 2022. Remote Sens., 14(9), id. 2179. DOI: https://doi.org/10.3390/rs14092179
    20. Lin, J.-T., Rajesh, P.K., Lin, C.C.H., Chou, M.-Y., Liu, J.-Y., Yue, J., Hsiao, T.-Y., Tsai, H.-F., Chao, H.-M., Kung, M.-M., 2022. Rapid Conjugate Appearance of the Giant Ionospheric Lamb Wave Signatures in the Northern Hemisphere after Hunga-Tonga Volcano Eruptions. Geophys. Res. Lett., 49(8), id. e2022GL098222. DOI: https://doi.org/10.1029/2022GL098222
    21. Rajesh, P.K., Lin, C.C.H., Lin, J.T., Lin, C.Y., Liu, J.Y., Matsuo, T., Huang, C.Y., Chou, M.Y., Yue, J., Nishioka, M., Jin, H., Choi, J.M., Chen, S. P., Chou, M., Tsai, H.F., 2022. Extreme poleward expanding super plasma bubbles over Asia-Pacific region triggered by Tonga volcano eruption during the recovery-phase of geomagnetic storm. Geophys. Res. Lett., 49(15), id. e2022GL099798. DOI: https://doi.org/10.1029/2022GL099798
    22. Chernogor, L.F., Mylovanov, Y.B., Dorohov V.L., 2022. Ionospheric Effects accompanying the January 15, 2022 Tonga Volcano Explosion. In: Int. Conf. "Astronomy and Space Physics". Book of Abstracts. Kyiv, Ukraine, 18—21 Oct. 2022, pp. 83—84.
    23. Saito, S., 2022. Ionospheric disturbances observed over Japan following the eruption of Hunga Tonga-Hunga Ha’apai on 15 Janu- ary 2022. Earth Planets Space. 74(1), id. 57. DOI: https://doi.org/10.1186/s40623-022-01619-0
    24. Shinbori, A., Otsuka, Y., Sori, T., Nishioka, M., Perwitasari, S., Tsuda, T., Nishitani, N., 2022. Electromagnetic conjugacy of ion- ospheric disturbances after the 2022 Hunga Tonga-Hunga Ha’apai volcanic eruption as seen in GNSS-TEC and SuperDARN Hokkaido pair of radars observations. Earth Planets Space. 74(1), id. 106. DOI: https://doi.org/10.1186/s40623-022-01665-8
    25. Zhang, S.-R., Vierinen, J., Aa, E., Goncharenko, L.P., Erickson, P.J., Rideout, W., Coster, A.J., Spicher, A., 2022. 2022 Tonga Volca- nic Eruption Induced Global Propagation of Ionospheric Disturbances via Lamb Waves. Front. Astron. Space Sci., 9, id. 871275. DOI: https://doi.org/10.3389/fspas.2022.871275
    26. Themens, D.R., Watson, C., Žagar, N., Vasylkevych, S., Elvidge, S., McCaffrey, A., Prikryl, P., Reid, B., Wood, A., Jayachan- dran, P.T., 2022. Global propagation of ionospheric disturbances associated with the 2022 Tonga volcanic eruption. Geophys. Res. Lett., 49(7), id. e2022GL098158. DOI: https://doi.org/10.1029/2022GL098158
    27. Ern, M., Hoffmann, L., Rhode, S., Preusse, P., 2022. The mesoscale gravity wave response to the 2022 Tonga volcanic eruption: AIRS and MLS satellite observations and source backtracing. Geophys. Res. Lett., 49(10), id. e2022GL098626. DOI: https://doi.org/10.1029/2022GL098626
    28. Harding, B.J., Wu, Y.-J.J., Alken, P., Yamazaki, Y., Triplett, C.C., Immel, T.J., Gasque, L.C., Mende, S.B., Xiong, C., 2022. Impacts of the January 2022 Tonga Volcanic Eruption on the Ionospheric Dynamo: ICON-MIGHTI and Swarm Observations of Extreme Neutral Winds and Currents. Geophys. Res. Lett., 49(9), id. e2022GL098577. DOI: https://doi.org/10.1029/2022GL098577
    29. Le, G., Liu, G., Yizengaw, E., Englert, C.R., 2022. Intense equatorial electrojet and counter electrojet caused by the 15 January 2022 Tonga volcanic eruption: Space- and ground-based observations. Geophys. Res. Lett., 49(11), id. e2022GL099002. DOI: https://doi.org/10.1029/2022GL099002
    30. Kulichkov, S.N., Chunchuzov, I.P., Popov, O.E., Gorchakov, G.I., Mishenin, A.A., Perepelkin, V.G., Bush, G.A., Skorokhod, A.I., Vinogradov, Yu.A., Semutnikova, E.G., Šepic, J., Medvedev, I.P., Gushchin, R.A., Kopeikin, V.M., Belikov, I.B., Gubanova, D.P., Karpov, A.V., Tikhonov, A.V., 2022. Acoustic-Gravity Lamb Waves from the Eruption of the Hunga-Tonga-Hunga-Hapai Volca- no, Its Energy Release and Impact on Aerosol Concentrations and Tsunami. Pure Appl. Geophys., 179, pp. 1533—1548. DOI: https://doi.org/10.1007/s00024-022-03046-4


Keywords


Tonga volcano; ionosphere; total electron content; ionospheric "hole"; quasi-periodic disturbances; disturbance parameters

Full Text:

PDF


Creative Commons License
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)